TECHNICAL REPORT ON THE MINERAL RESOURCE FOR THE CRISTINA PROJECT Located in Chihuahua, Mexico

Prepared for

TCP1 Corporation

and

Atacama Copper Corporation

Prepared by:

Jacob W. Richey, PE Independent Mining Consultants, Inc.

Effective Date: January 1, 2023 Issue date: December 1, 2023

Table of Contents

1	Sun	nmary	1-1
	1.1	Property Description and Ownership	1-1
	1.2	Geology and Mineralization	1-2
	1.3	Drilling	1-2
	1.4	Metallurgical Testing	1-1
	1.5	Mineral Resource Estimate	1-1
	1.6	Conclusions and Recommendations	1-4
2	Intr	oduction	2-1
	2.1	Qualification of Author	2-1
	2.2	Sources of Information	2-2
	2.3	Effective Date	2-2
	2.4	Terms of Reference	2-2
3	Rel	iance on Other Experts	3-1
4	Pro	perty Description and Location	4-1
	4.1	Property Location	4-1
	4.2	Mineral Tenure and Ownership	4-1
	4.3	Royalties	4-4
	4.4	Environmental Liabilities	4-4
5	Acc	essibility, Climate, Local Resources, Infrastructure and Physiography	5-1
	5.1	Topography, Elevation and Vegetation	5-1
	5.2	Population Centers and Transportation	5-1
	5.3	Climate and Operating Season	5-2
	5.4	Surface Rights, Power, Water and Infrastructure	5-2
6	His	tory	6-1
	6.1	Francisco and Glamis Gold	6-1
	6.2	Goldcorp	6-1
	6.3	Oro Premier	6-1
	6.4	TCP1	6-1
7	Ged	ological Setting and Mineralization	7-1
	7.1	Regional Geology	7-1

7.2	Local Geology	7-2
7.3	Deposit Geology	7-4
7.4	Mineralization	7-6
8 Dep	oosit Type	8-1
9 Ехр	loration	9-1
10 Dril	ling	10-1
10.1	Drilling Programs	10-1
10.2	Cross Sections of Drill Holes	10-3
10.3	General Drilling Protocol	10-21
11 Sam	nple Preparation, Analyses, and Security	11-1
11.1	Assay Laboratory	11-1
11.3	1.1 Sample Preparation	11-1
11.3	1.2 Analytical Procedures	11-1
11.2	Sample Preparation Methods and QA/QC insertions	11-2
11.2	2.1 Drilling by TCP1 Corporation	11-3
11.2	2.2 Drilling by Oro Premier	11-4
11.2	2.3 Drilling by Goldcorp	11-5
11.3	Check Assay Program	11-6
11.4	Additional Assays in Previous Drilling	11-6
11.5	Opinion of Qualified Person	11-8
12 Dat	a Verification	12-1
12.1	Certificate Check	12-1
12.3	1.1 Certificate Checks on Holes CRD15-54 through CRD15-60	12-1
12.3	1.2 Certificate Checks on Holes ACD18-83 through ACD20-160	12-1
12.3	1.3 Certificate Checks for assays in 2022	12-1
12.2	Blanks for Gold and Silver	12-2
12.3	Duplicates	12-4
12.4	Standards	12-6
12.5	Additional Confirmation of 2022 Assay Program	12-13
12.6	Fall 2021 Check Assay Program	12-14
13 Mir	neral Processing and Metallurgical Testing	13-1

13	.1 9	Sulfide Test Work Done by SGS	13-1
	13.1.1	Samples used in Testing	13-1
	13.1.2	Flotation Pb-Zn	13-1
	13.1.3	Flotation Cu-Pb-Zn	13-3
	13.1.4	Pyrite Rougher Concentrate Leach	13-5
13	.2 (Oxides	13-6
13	.3 (Conclusions and Recommendations	13-6
14	Minera	Il Resource Estimate	14-1
14	.1	Database	14-1
14	.2 1	Model Description	14-1
14	.3 (Geology	14-3
	14.3.1	Geology in South Model	14-3
	14.3.2	Geology in North Model	14-5
14	.4 I	Redox Assignment	14-6
14	.5 I	Boundary analysis	14-6
14	.6 (Capping	14-7
14	.7 (Compositing	14-9
14	.8 ۱	Variography	14-10
14	.9 (Grade Estimation	14-11
	14.9.1	South Model Grade Estimation	14-12
	14.9.2	North Model Grade Estimation	14-14
14	.10	Classification	14-17
14	.11	Density	14-17
14	.12	Verification	14-18
14	.13 I	Mineral Resource Estimate	14-18
15	Minera	Il Reserve Estimates	15-26
16	Mining	Methods	16-1
17	Recove	ry Methods	17-1
18	Project	Infrastructure	18-1
19	Market	t Studies and Contracts	19-1
20	Enviro	nment Studies, Permitting and Social or Community Impact	20-1

21	Capital and Operating Costs	21-1
22	Economic Analysis	. 22-1
23	Adjacent Properties	. 23-1
24	Other Relevant Data and Information	24-1
25	Interpretations and Conclusions	. 25-1
26	Recommendations	26-1
27	References	27-1

List of Tables

Table 14.6: Average Assay Grades and Average Composites	14-10
Table 14.7: Search Ellipses and Orientations for the South Model	14-12
Table 14.8: Search Elipses and Orientations for the North Model	14-14
Table 14.9: Classification Criteria	14-17
Table 14.10: Densities Applied to the South Model	14-17
Table 14.11: Densities Applied to the North Model	14-18
Table 14.12: Process Recovery and Smelter Terms for Sulfide and Transition Material	14-19
Table 14.13: Inputs to Constrain Mineral Resource	14-19
Table 14.14: Metal Prices used in Sensitivities of Potentially Economic Material	14-22
Table 14.15: Sensitivity of Potentially Economic Material to Metal Price	14-23
Table 14.16: Detail of Mineral Resource Estimate for the Cristina Project 1 January 20	23 . 14-
24	
Table 26.1: Cost Estimate of Recommended Work Programs	26-1

List of Figures

Figure 1.1: General Location Map of the Cristina Project (source: IMC/TCP1 2022)	1-1
Figure 1.2: Drilling and Resource Model Bounds with Project Topography (source: IMC	2023)
	1-3
Figure 1.3: Projected Cu-Pb-Zn Batch Cleaner Flotation Test Flowsheet	1-1
Figure 4.1: General Location Map of the Cristina Project (source: IMC/TCP1 2022)	
Figure 4.2: Location of Cristina Property Concessions (TCP1 2022)	4-2
Figure 4.3: Location of Concessions and Ejido Land	4-3
Figure 5.1: Location of Connecting Road (Source: TCP1 2023)	5-1
Figure 5.2: Location of Cristina project in the Guadalupe y Calvo Municipality	
Figure 7.1: Geologic and Tectonic map of Northwestern Mexico (Base Map: Baranjas 2	2014,
Project Location: IMC 2022)	7-1
Figure 7.2: Lithologies Present in the Geologic Column at Cristina	7-2
Figure 7.3: Geologic Map of the Cristina Project with Vein Names	7-3
Figure 7.4: Andesite Dike Rocks, Epidote, Tourmaline and Quartz Veins	7-5
Figure 7.5: Hydrothermal Breccia and Quartz Vein Textures	7-6
Figure 7.6: Quartz-Carbonate-Sulfide Vein	7-7
Figure 7.7: Mineralized Interval in Eastern End of Guadalupe Vein	7-7
Figure 7.8: Adularia-rich Vein with Galena and Sphalerite on Margins	7-8
Figure 7.9: Massive Milky Quartz Vein in Mexico Libre	7-9
Figure 10.1: Hole Location Map (source: IMC 2023)	10-2
Figure 10.2: Section AA'	10-4
Figure 10.3: Section BB'	10-5
Figure 10.4: Section CC'	10-6
Figure 10.5: Section DD'	10-7
Figure 10.6: Section EE'	10-8
Figure 10.7: Section FF'	10-9
Figure 12.1: Blank Gold Assays	12-2
Figure 12.2: Blank Silver Assays	12-2
Figure 12.3 X-Y Plot of Original Silver(X) Grade and Duplicate Silver(Y) Grade in 2018-2	020
Drilling	12-5
Figure 12.4: Plot of Original Gold(X) Grade and Duplicate Gold(Y) Grade in 2022 Assay.	S
(Orange-May 2022 and Earlier, Blue-After May 2022)	
Figure 12.5: Gold Assay values of Standard CDN-GS-5G	12-7
Figure 12.6: Silver Assay values of Standard CDN-GS-5G	12-7
Figure 12.7: Gold Assay values of Standard CDN-ME-7	
Figure 12.8: Silver Assay values of Standard CDN-ME-7	
Figure 12.9: Zinc Assay values of Standard CDN-ME-7	
Figure 12.10: Lead Assay values of Standard CDN-ME-7	
Figure 12.11 Gold Assay values of Standard OREAS 620	. 12-11

Figure 12.12 Silver Assay values of Standard OREAS 620	12-11
Figure 12.13 Lead Assay values of Standard OREAS 620	12-12
Figure 12.14 Zinc Assay values of Standard OREAS 620	12-12
Figure 12.15 Copper Assay values of Standard OREAS 620	12-13
Figure 12.16: Distributions of 2022 Drilling and 2010-2016 Drilling within 100m	n and inside
"Low Grade + High Grade" Solids	12-14
Figure 12.17: X-Y Plots of Original Assays(X) and Check Assays(Y)	12-16
Figure 12.18: X-Y Plot of Check Silver Assays(Y) against Original 2018-2020 Silve	er(X) 12-17
Figure 13.1: Pb-Zn Locked Cycle Flotation Test Flowsheet	13-2
Figure 13.2: Projected Cu-Pb-Zn Batch Cleaner Flotation Test Flowsheet	13-4
Figure 13.3: Projected Cu-Pb-Zn Locked Cycle Test Flotation Flowsheet	13-5
Figure 14.1: Location of Block Models and Drill Holes (source: IMC 2023)	14-2
Figure 14.2: Cross Section of Geology Solids in South Model at 260,050E Looking	ng West. HG-
Red LG-Blue, Rhyolite-Green	14-4
Figure 14.3: Cross Section of Geology Solids in North Model at Los Ingleses Vei	n Looking
West. HG-Red LG-Blue, Rhyolite-Green	14-5
Figure 14.4: Probability Plot of HG+LG gold assays in North (Black) and South (I	Blue) Models
	14-7
Figure 14.5: Location of "Ore Shoots" where Gold Grades are un-capped in Ora	ange 14-9
Figure 14.6: Experimental and Fitted Variograms for Au, Ag and Zn in Guadalup	oe Vein
Domains 1+2	14-11
Figure 14.7: Search Domains in South Model (source: IMC 2023)	14-13
Figure 14.8: Search Domains in North Model (source: IMC 2023)	14-16
Figure 14.9: \$1700 Au Pit Shell Constraining Open Pit Resource in South Mode	l (source: IMC
2023)	14-20
Figure 14.10: \$1700 Au Pit Shell Constraining Open Pit Resource in North Mod	el (source:
IMC 2023)	14-21

1 Summary

This Technical Report presents a maiden Mineral Resource estimate for the Cristina property located in the Guadalupe y Calvo municipality of Chihuahua Mexico. The Mineral Resource estimate is based on the results of exploration drilling completed through 2022. The report was prepared for TCP1 Corporation (TCP1) and its wholly owned subsidiary Criscora S.A. de C.V. (Criscora). The Mineral Resource estimate is based on the Canadian Institute of Mining, Metalurgy and Petroleum (CIM) Standards for Mineral Resources and Mineral Reserves (May 10, 2014), and is reported using the NI 43-101-F1 Technical Report format.

The oldest workings at Cristina date from 1885, with modern exploration work restarting in 2003. The most recent exploration drilling was completed in 2022.

1.1 Property Description and Ownership

The Cristina property is 100% owned by Criscora. The project is located approximately 160 km north of Culiacan, Sinaloa. Figure 1.1 illustrates the location of the property.

Figure 1.1: General Location Map of the Cristina Project (source: IMC/TCP1 2022)

Although some of the gravel roads offer good interior access to the Cristina claims most of the area is accessed by foot. The property can be considered to be in a remote part of Southern Chihuahua State. The camp has a modular house with 8 rooms. The power source is through generator or solar panels. There are covered logging areas and a warehouse.

1.2 Geology and Mineralization

The geology of the property is an andesitic volcanic sequence, intercalated locally with dacitic intrusions and related lava flows and breccias. This sequence is cut by andesitic and hornblende-plagioclase porphyry following fault trends. The andesite/volcano-sedimentary rocks are mainly fine textured, moderately fractured and have locally experienced chlorite-epidote+pyrite alteration. Faults are locally weakly silicified with strongly argillized wall rocks. Most veins and quartz breccias are associated with faults and strike of N75E, and dip from 75°-85° to the "SE". These rocks are generally considered part of the Tarahumara Formation regionally. These are overlain by a post-mineral rhyolite package, which is correlated with a calc-alkaline volcanic sequence of the Upper Volcanic Supergroup. Normal faults with a strike of N35W are associated with tectonic extension and are reflected in the current topography.

The Cristina mineralization is similar to other active mines in the region including San Julian (Fresnillo), La Cienega (Fresnillo) and Tayoltita/San Dimas. Quartz veins and quartz stockwork are present over an area of eight square kilometers. Single vein zones can be traced over a distance of 5 kilometers. Mineralization is considered to be epithermal to mesothermal, gold-silver with base metal veins. Most drilling has focused on the best gold rich targets and not the silver rich part of the system.

High grade gold tends to be in banded quartz veins with calcite replacement textures. Adularia and amethyst are always associated with lead, zinc and copper. Veins have varying widths, sometimes up to 10 meters. In some areas, quartz-rich veins are older and are cut by younger massive sulfide veins, giving the impression that there are many stages of overlapping mineralization.

1.3 Drilling

All of the drilling completed to date on the Cristina Project has been HQ and NTW diameter diamond core drilling. The Cristina Project has been drilled by three companies: Goldcorp, Oro Premier and TCP1. Drilling began in 2010 and is ongoing. Drilling that has been included in this Technical Report was completed between 2010 and 2022.

In total, 223 diamond drill holes have been drilled at the Cristina Project. The locations of the drill holes with the project topography are provided in Figure 1.2. The locations of the Resource models are provided in the figure also.

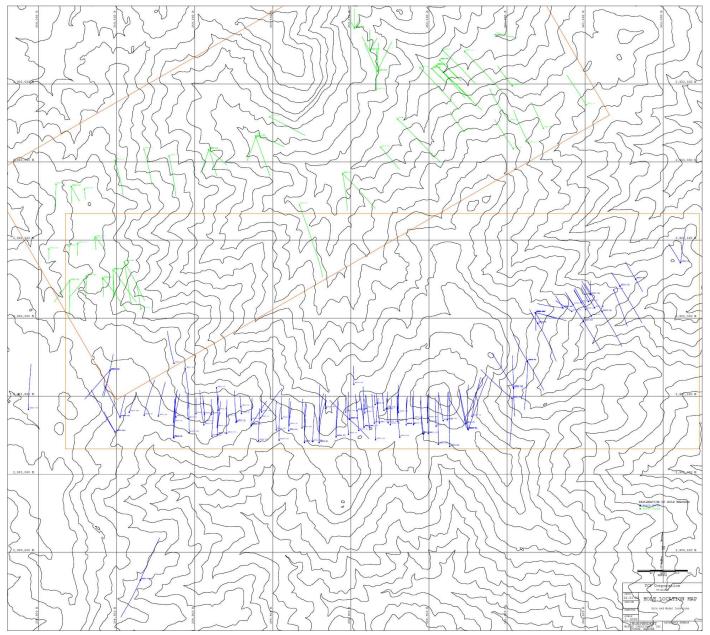


Figure 1.2: Drilling and Resource Model Bounds with Project Topography (source: IMC 2023)

1.4 Metallurgical Testing

Metallurgical testing on the production of sulfide concentrates was conducted by SGS in 2021. They performed lock cycle tests and bench tests on mineralized material collected from the Guadalupe vein. The result of their work suggested a flowsheet that produces 3 concentrates (Cu+Zn+Pb) and a rough pyrite concentrate to capture the remaining precious metals. The flowsheet is provided in Figure 1.3 and the estimate of metal recoveries and concentrate grades is provided in Table 1.1.

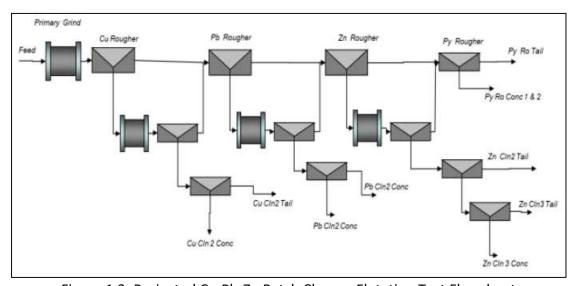


Figure 1.3: Projected Cu-Pb-Zn Batch Cleaner Flotation Test Flowsheet

Stream	Weight	Weight Grade (%, g/t)					Distribution (%)										
Stream	(%)	(%)	(%)	Pb	Zn	Cu	Fe	S	Au	Ag	Pb	Zn	Cu	Fe	S	Au	Ag
Feed	100.0	0.39	1.12	0.16	5.51	6.40	1.13	72.5	100	100	100	100	100	100	100		
Cu 2nd Cl Conc	0.5	2.64	3.27	22.0	18.5	33.8	35.9	5817	3.6	1.5	71.3	1.8	2.8	16.8	42.4		
Pb 2nd Cl Conc	0.5	65.5	3.06	0.38	5.20	17.2	14.7	1910	80.5	1.3	1.1	0.5	1.3	6.3	12.7		
Zn 3rd Cl Conc	1.5	0.64	63.9	0.96	1.97	32.4	15.8	860	2.5	86.8	9.0	0.5	7.7	21.3	18.1		
Py Ro Conc 1+2	17.9	0.16	0.39	0.08	23.6	29.3	3.06	88.5	7.3	6.3	8.7	77.0	82.1	48.5	21.9		
Pv Ro Tail	79.5	0.03	0.06	0.02	1 40	0.49	0.10	46	6.1	41	99	20.2	6.1	7.1	5.0		

Table 1.1: Estimated Concentrate Grades and Recoveries for Cu-Pb-Zn Flowsheet

1.5 Mineral Resource Estimate

The drill hole database and interpretations of geology used in developing the resource model were provided to Independent Mining Consultants Inc. (IMC) by TCP1. The geology solids provided were reviewed by IMC. The final database used in Mineral Resource estimation was the entire drill hole database provided to IMC, with the exception of three holes that fell outside of the model limits. Jacob Richey (Qualified Person) of IMC accepts the final data base for the purpose of estimating Mineral Resources.

The Mineral Resources were established by building four 3-D block models to estimate the in-situ mineralization. Mineral Resource estimates for both models include in-situ material that meets the requirements for reasonable prospects for eventual economic extraction either by underground mining methods, or is contained within a computer-generated pit shell. The economic and process input information to the algorithm is summarized in Sections 14.13.

The qualified person for the Mineral Resource is Jacob Richey of IMC. The Mineral Resource could change as additional drilling is completed or as additional process recovery information becomes available. Changes to the geological interpretation or additional geotechnical investigation could affect the Mineral Resource. Metal prices and operating costs could materially change the resources in either a positive or negative way. Table 1.2 summarizes the Mineral Resources. Sensitivity to metal prices of the tonnage and grade of potentially economic material is provided in Table 1.3.

Table 1.2: Cristina Project Mineral Resources, 1 January 2023

	Redox	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %
	Oxide	2,171	29.96	0.40	39.60	0.28	0.13	0.02
Indicated	Transition	2,361	37.86	0.40	30.91	0.29	0.13	0.03
maicated	Sulfide	12,995	<u>47.11</u>	0.55	33.31	0.53	0.21	0.04
	Total	17,527	43.74	0.51	33.77	0.47	0.19	0.04
	Oxide	3,703	26.79	0.39	30.29	0.20	0.10	0.02
	Transition	3,623	27.18	0.34	18.93	0.24	0.10	0.03
Inferred	Sulfide	11,689	<u>50.09</u>	0.60	29.22	0.68	0.25	0.06
	Total	19,015	41.19	0.51	27.47	0.50	0.19	0.05

Indicated Contained Metal								
Au koz	Ag koz	Zn klb	Pb klb	Cu klb				
28	2,764							
31	2,346	14,914	6,625	1,629				
<u>230</u>	13,918	151,609	60,860	12,602				
288	19,028	166,523	67,485	14,231				
47	3,606							
39	2,205	19,299	8,046	2,495				
<u>225</u>	10,980	174,197	64,526	16,358				
311	16,791	193,496	72,572	18,853				

^{*}Open Pit tonnages were tabulated at \$9.60/t Net of Smelter Return (NSR)

^{*}Underground Tonnages were tabulated as blocks above \$55.00/t NSR and touching at least 3 other blocks above same cutoff.

^{*}Zinc, Lead and Copper metal within "Oxide" material was not reported in contained metal.

^{*}The Qualified Person for the Mineral Resource is Jacob Richey

^{*}Mineral Resource is compliant with CIM standards

^{*}Metal Prices used: \$1700/oz Au, \$23.61/oz Ag, \$1.32/lb Zn, \$0.94/lb Pb and \$3.78/lb Cu

^{*}ktons are metric tonnes; koz are 1,000 troy ounces; klbs are 1,000 imperial pounds; g/t are grams per metric tonnes

^{*}Inputs to pit optimization in Tables 14.12 and 14.13

Table 1.3: Sensitivity	v of Potentially	/ Economic N	/laterial to	Metal Price

	Table 1.3: Sensitivity of Potentially Econom								IC I	c Material to Metal Price							
	South Model Open Pit and Underground Indicated Material								Contained Metal								
	AuPr \$/oz	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %		Au koz	Ag koz	Zn klb	Pb klb	Cu klb			
	2000	26,627	40.57	0.40	25.20	0.39	0.15	0.03		346	21,571	213,306	83,022	17,250			
	1900	24,552	39.87	0.42	26.54	0.40	0.15	0.03	Ī	334	20,947	201,619	76,791	16,151			
	1800	21,768	39.81	0.44	28.61	0.41	0.16	0.04	Ī	310	20,024	184,665	72,682	18,514			
	1700	16,486	43.00	0.49	34.27	0.46	0.19	0.04	İ	262	18,166	153,531	62,294	12,601			
l	1600	8,849	53.85	0.65	44.70	0.57	0.23	0.05	İ	186	12,718	101,919	40,351	10,118			
	North Model Open Pit and Underground Indicated Material									1							
Indicated					ound Indic							ontained Me		ı			
	AuPr \$/oz	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %		Au koz	Ag koz	Zn klb	Pb klb	Cu klb			
	2000	1,634	57.67	0.66	23.98	0.51	0.20	0.06		35	1,260	17,725	6,982	2,221			
	1900	1,388	57.33	0.71	24.17	0.55	0.21	0.07		32	1,079	16,100	6,299	2,006			
	1800	1,201	56.55	0.75	24.82	0.57	0.23	0.07		29	958	14,559	5,840	1,763			
	1700	1,041	55.54	0.80	25.74	0.59	0.24	0.08		27	861	12,992	5,191	1,631			
	1600	868	54.24	0.84	27.09	0.59	0.25	0.08		24	756	10,743	4,583	1,340			
	Total North and South Models Open Dit and Underground Indicated Machaniel										Contained Martel						
	Total North and South Models Open Pit and Underground Indicated Material AuPr \$/oz									Contained Metal Au koz Ag koz Zn klb Pb klb Cu klb							
		ktons 28,261		Au g/t	Ag g/t	Zn % 0.40	0.16			Au koz	Ag koz 22,831	Zn klb 231,031	90,004				
ŀ	2000 1900	25,940	41.56 40.81	0.42 0.44	25.13	0.40	0.16	0.03		380 366	-	231,031		19,471			
ŀ					26.41		0.16	0.03	ŀ		22,025 20,982		83,090	18,157			
1	1800	22,969	40.69	0.46	28.41	0.42	0.17	0.04		339		199,224	78,522	20,277			
1	1700 1600	17,527 9,717	43.74	0.51 0.67	33.77 43.13	0.47 0.57	0.19	0.04		288 210	19,028 13,474	166,523	67,485	14,231			
	1600	9,/1/	53.89	0.67	45.15	0.57	0.23	0.06	l	210	13,474	112,662	44,934	11,458			
	South Model Open Pit and Underground Inferred Material								Ī	Contained Metal							
İ	AuPr \$/oz	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %	İ	Au koz	Ag koz	Zn klb	Pb klb	Cu klb			
l	2000	26,167	37.26	0.40	20.43	0.37	0.15	0.04	İ	334	17,191	197,247	76,300	21,321			
İ	1900	23,820	36.69	0.41	21.47	0.39	0.15	0.04	İ	316	16,444	187,004	70,470	19,838			
İ	1800	21,392	36.29	0.44	22.78	0.41	0.16	0.04	İ	301	15,665	176,486	66,876	17,759			
İ	1700	16,149	39.43	0.49	27.01	0.46	0.19	0.05	İ	255	14,025	147,841	58,949	14,926			
İ	1600	10,443	48.05	0.62	34.87	0.58	0.23	0.06		207	11,707	122,504	46,588	13,070			
	North Model Open Pit and Underground Inferred Material									Contained Metal							
1	AuPr \$/oz	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %		Au koz	Ag koz	Zn klb	Pb klb	Cu klb			
l g	2000	4,521	56.98	0.59	27.62	0.61	0.19	0.06		85	4,015	58,910	18,627	5,267			
Inferred	1900	3,946	54.97	0.60	28.02	0.66	0.20	0.06		76	3,555	55,020	16,828	4,960			
	1800	3,325	52.96	0.60	28.57	0.71	0.21	0.07		65	3,055	49,963	15,032	4,545			
	1700	2,866	51.09	0.61	30.02	0.75	0.23	0.07		57	2,766	45,655	13,624	3,926			
	1600	2,208	51.23	0.65	33.36	0.80	0.25	0.07		46	2,368	37,636	11,757	3,373			
	Total North and South Models Open Pit and Underground Inferred Material								ī	Contained Metal							
ŀ	AuPr \$/oz	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %		Au koz	Ag koz	Zn klb	Pb klb	Cu klb			
	2000	30,688	40.16	0.42	21.49	0.41	0.15	0.04		419	21,206	256,157	94,927	26,588			
	1900	27,766	39.29	0.44	22.40	0.42	0.16	0.04	l	392	19,999	242,025	87,298	24,798			
	1800	24,717	38.53	0.46	23.56	0.45	0.17	0.04		366	18,719	226,449	81,908	22,303			
	1700	19,015	41.19	0.51	27.47	0.50	0.19	0.05		311	16,791	193,496	72,572	18,853			
	1600	12,651	48.60	0.62	34.61	0.62	0.23	0.06		253	14,075	160,140	58,345	16,443			
	1000	,001		0.02		0.02	5.25	5.00	ı		,0,5		55,515	-0,110			

^{*}Open Pit tonnages were tabulated at \$9.60/t NSR

^{*}Prices used as input to the various cases are as follows:

Au Price	\$1,600	\$/oz	\$1,700	\$/oz	\$1,800	\$/oz	\$1,900	\$/oz	\$2,000	\$/oz
Ag Price	22.22	\$/oz	23.61	\$/oz	25.00	\$/oz	26.39	\$/oz	27.78	\$/oz
Zn Price	1.24	\$/lb	1.32	\$/lb	1.40	\$/lb	1.48	\$/lb	1.56	\$/lb
Pb Price	0.89	\$/lb	0.94	\$/lb	1.00	\$/lb	1.06	\$/lb	1.11	\$/lb
Cu Price	3.56	\$/lb	3.78	\$/lb	4.00	\$/lb	4.22	\$/lb	4.44	\$/lb

^{*}Underground Tonnages were tabulated as blocks above \$55.00/t NSR and touching at least 3 other blocks above same cutoff.

^{*}Zinc, Lead and Copper metal within "Oxide" material was not reported in contained metal.

1.6 Conclusions and Recommendations

This Technical Report and the estimation of a Mineral Resource indicate that there is mineralization with reasonable prospects for eventual economic extraction.

IMC recommends that exploration and in-fill drilling be continued. The veins are open at depth in most areas. There is potential to add Mineral Resources along strike of the identified mineralized structures.

Additional lock cycle testing should be completed to confirm the flowsheet design. Metallurgical recoveries on transition and oxide material should be investigated. Additional work should be completed to address the gold and silver that reports to the pyrite concentrate. This would include additional investigation on the leaching of gold and silver from the pyrite concentrate or assessing the salability of the pyrite concentrate.

TCP1 should consider assaying gold using an atomic adsorption finish in place of a gravimetric finish.

2 Introduction

This Technical Report presents a maiden Mineral Resource estimate for the Cristina property located in the Guadalupe y Calvo municipality of Chihuahua Mexico. The Mineral Resource estimate is based on the results of exploration drilling completed through 2022. The report was prepared for TCP1 Corporation (TCP1) and its wholly owned subsidiary Criscora S.A. de C.V. (Criscora) and also Atacama Copper Corporation.

In a 26 October 2023 press release, Atacama Copper Corporation (TSXV:ACOP) (the "Company") announced that it had signed a binding letter of intent dated October 26, 2023 with TCP1 Corporation, an arm's length private company with mineral properties located in Mexico, relating to a business combination whereby the Company will acquire all of the issued and outstanding shares of TCP1 in exchange for common shares of the Company.

The Mineral Resource estimate is based on the Canadian Institute of Mining, Metalurgy and Petroleum (CIM) Standards for Mineral Resources and Mineral Reserves (May 10, 2014), and is reported using the NI 43-101-F1 Technical Report format.

TCP1 purchased Criscora and the Cristina project in 2018. Modern work on the property began in 2003 with the first drill holes being drilled in 2010. The project location is approximately 160 km north of Culiacan Sinaloa.

2.1 Qualification of Author

The author is a specialist in the fields of Mineral Resource and Mineral Reserve estimation, mine planning, and capital and operating cost estimation. The author relied on the expertise of other specialists regarding: land and property ownership, geology, and metallurgical testing and mineral processing.

Jacob Richey P.E. of Independent Mining Consultants Inc. (IMC) is the sole author of the Technical Report. He was assisted by TCP1 technical staff. The author, by virtue of education, experience and professional association, is considered a Qualified Person ("QP"), as defined in the NI 43-101 standard and is a member in good standing of a recognized professional organization. The author's QP certificate is provided at the end of this report.

The author visited the Cristina project site on 23-24 February 2022. Additional drilling of 28 holes occurred after the site visit during the first half of 2022. Criscora also assayed 4,423m of previously unassayed 2017-2020 drilling intervals in the first half of 2022 (see section 11.4). The author observed the drill pad prepared for hole ACD22-193, and also observed the assigning of intervals and core cutting for additional assays along previously drilled hole ACD19-122. Although additional holes were drilled after the site inspection, results were consistent with previous drilling and a follow up visit would provide negligible benefit.

2.2 Sources of Information

The drill hole database was supplied to IMC by TCP1.

Text from Charlie Ronkos and a report from 2010 by a geologist with the name of John Wood was referenced for elaboration on the local and deposit geology in Section 7.

Other sources of information include data and reports supplied by TCP1 personnel as well as documents cited throughout the report and referenced in Section 27. The items pertaining to land tenure were provided by TCP1 and have not been independently reviewed by the authors.

2.3 Effective Date

The effective date of this report is 1 January 2023.

2.4 Terms of Reference

This report will use metric units unless specifically stated otherwise. Tonnes means metric tons of 1000 kilograms. ktonnes means 1,000 metric tonnes. Grades are in grams per metric tonne (g/t) or parts per million (PPM) or by percentage (%).

Distances are in meters (m) or kilometers (km).

Abbreviations used within this report are defined or spelled out when first used in text.

3 Reliance on Other Experts

Charlie Ronkos of TCP1 provided and was relied upon for the information on the company's land holdings that is presented in Section 4 in an executive summary written on the property and an email exchange on 13 May 2022. He also provided information on the property's history.

An SGS report, "An Investigation into THE MINERALOGY AND FLOTATION ON SAMPLES FROM THE CRISTINA DEPOSIT" prepared by Jesse Ding, from July 2021 that reported and summarized their investigative metallurgical work was relied on for chapter 13.

4 Property Description and Location

4.1 Property Location

The general location of the Cristina project is shown in Figure 4.1. The property is located at latitude 26° 13′04″ N and longitude 107° 25′07″ W in the Sierra Madre Occidental mountains approximately 160 km directly north of Culiacan. The coordinate system used in the maps, plans and sections of this report is the Universal Transverse Mercator System referenced with datum NAD 27 North America.



Figure 4.1: General Location Map of the Cristina Project (source: IMC/TCP1 2022)

4.2 Mineral Tenure and Ownership

TCP1 purchased 100% of the original Cristina property concessions in 2018 from Goldcorp. These original 8 claims made up a 3,447-hectare property concession. TCP1 staked additional mining claims beyond the original Cristina concession through Criscora. These concessions have been applied for but have not yet been awarded. The location of the original Cristina property concessions and the potential expanded concessions are provided in Figure 14.2.

				o.a					
		Validity				Surface			
	No.	Name	Record	Title	From	То	Has	Municipality	State
	1	Ampl. Este de Gpe.	018/00635	166141	7/4/1980	6/4/2030	7.0471	Guadalupe y Calvo	Chih.
sion	2	Guadalupe	018/00574	168684	2/7/1981	1/7/2031	20.0000	Guadalupe y Calvo	Chih.
SS	3	Clemencia	31.1/1-44	172322	24/11/1983	23/11/2033	50.0000	Guadalupe y Calvo	Chih.
Conce	4	Cristina	016/30306	216533	17/05/2002	16/05/2052	3,305.3958	Guadalupe y Calvo	Chih.
	5	Apl. Cristina Frac. B	016/34673	229086	6/3/2007	5/3/2057	30.0000	Guadalupe y Calvo	Chih.
gine	6	Apl. Cristina Frac. C	016/34673	229087	6/3/2007	5/3/2057	9.2758	Guadalupe y Calvo	Chih.
Original	7	Apl. Cristina Frac. D	016/34673	229088	6/3/2007	5/3/2057	0.9508	Guadalupe y Calvo	Chih.
)	8	Cucu	016/35913	232746	12/10/2008	20/10/2058	24.3076	Guadalupe y Calvo	Chih.
	9	CRISTINA GRANDE		16748707			6,970.0000	Guadalupe y Calvo	Chih.
	10	BASONOPA		20190101623975			55,212.0000	Guadalupe y Calvo	Chih.
	Total	Concessions shown	in red have no	65,628.9771					

Table 4.1: Claims Comprising Cristina Property Concession

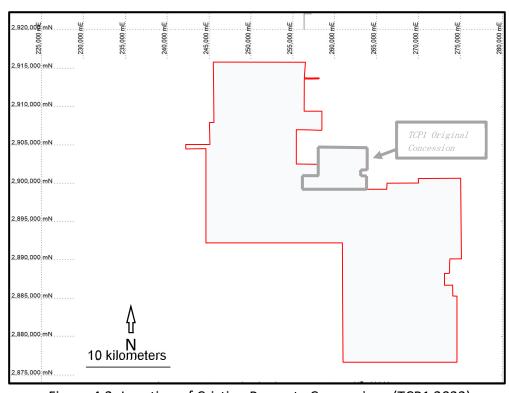


Figure 4.2: Location of Cristina Property Concessions (TCP1 2022)

The surface rights of the land on which the original 8 concessions are located belong to the Ejido Cinco Llagas or the Ejido San Ignacio de Cieneguilla. In 2014, Criscora entered an agreement with the Ejido Cinco Llagas to gain temporary occupation of the Cinco Llagas portion of the original 8 concessions for the purposes of exploration and exploitation. All drilling to date has occurred on Cinco Llagas land. The agreement only covers the initial 8 concessions containing the Cristina project and Criscora would need to form new agreements for exploration access to land outside of the Ejido Cinco Llagas contained in the original 8 concessions. The location of the 8 original concessions in relation to the Ejido land is provided in Figure 4.3. Ejido Cinco Llagas shown in green.

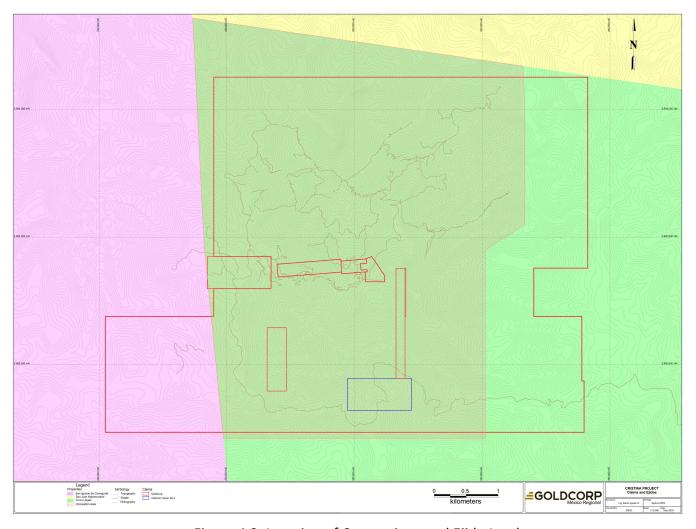


Figure 4.3: Location of Concessions and Ejido Land

All payments to the Ejido Cinco Llagas for project access are up to date as well as the payments for the duties and taxes of the mining concessions.

Another person has rights to a claim within the Criscora original claim concession. This claim in shown in blue on Figure 4.3. It is approximately 2 km south of the Guadalupe vein and does not affect the project based on the current understanding of mineralization.

There are no known significant factors or risks that might affect access, title, or the ability to perform work on the property. The only requirements for retaining the property are annual tax payments to the Mexican government and annual filing of documents. Additional drilling would require an extension to Criscora's current 2018 SEMARNAT permit.

4.3 Royalties

The purchase of the original Cristina project concessions (3,447 hectares) included a 2% NSR royalty payable to Goldcorp. The royalty can be bought down to 1% NSR for a \$1 million payment. This 2% royalty was sold to Maverix Metals in December of 2020.

Additional concessions added to the land package are subject to a 1% NSR royalty payable to Maverix Metals. The additional two mining claims applied for by TCP1 (Cristina Grande and Basanopa) would be subject to a 1% NSR royalty payable to Maverix Metals.

4.4 Environmental Liabilities

In 2018 through the Secretariat of Environment and Natural Resources (SEMARNAT) offices in the city of Chihuahua, Criscora obtained the permit necessary to undertake its 2018-2022 exploration program, which included the construction of drill pads and necessary roads to access drilling locations. This 2018 SEMARNAT permit to drill remains current and in force and will be closed once the approved work program is completed. Any additional drilling after the permit is closed will require filing for a new SEMARNAT permit.

Historical mining activities were only completed on a small scale. There are no known environmental liabilities from historical activities at the Cristina project. The only environmental liability applicable to the project currently, is the requirement to reclaim the drill pads and drill roads used for exploration in the years 2018 through present. The previous SEMARNAT permit before 2018 was closed in 2018 and reclamation was accepted by SEMARNAT indicating there is no environmental liability remaining for pre-2018 exploration works.

5 Accessibility, Climate, Local Resources, Infrastructure and Physiography

5.1 Topography, Elevation and Vegetation

The Cristina Project is located directly North of Culiacan 160 km in the Sierra Madre Occidental Mountains at an elevation range between 1,200 and 2,000 meters above sea level. The project site is in rugged, mountainous terrain, that is vegetated with pine and oak trees. The Basonopa river runs through the northeast corner of the property.

5.2 Population Centers and Transportation

The easiest road access to the Cristina property is from Culiacan, via the paved road to Soyatita for 135 kilometers, then 95 kilometers on a gravel road; a total time of 8 to 9 hours driving. Other access is by airplane, departing from Los Mochis to San Juan Nepomuceno, with one hour of flying, and 2.5 hours (15 km) by gravel road. Another option is to fly from Guasave (1 hour drive from Los Mochis) to Cinco Llagas and 1 hour by gravel road.

The Cristina project is located in the Guadalupe y Calvo municipality of Chihuahua. The largest towns in the municipality are Guadalupe y Calvo with a population of 5,800 and Baborigame with a population of 3,290 (as of 2010). Culiacan has a population of approximately 1 million (as of 2020) while Los Mochis has a population of around 300,000 (as of 2020).

Equipment that is transported to the project site by truck has to come through the town of San Juan Nepomuceno. The municipality is currently constructing an improved road that would shorten the route to the project site. The location of the connecting road is provided in Figure 15.1. A map of the location of the project in the Guadalupe y Calvo municipality is provided in Figure 5.2.

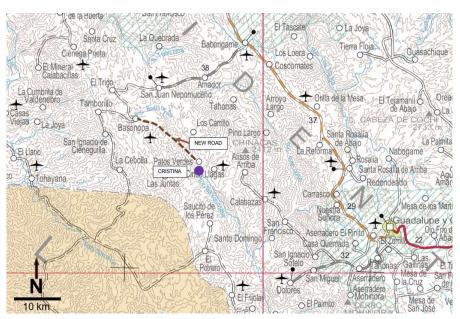


Figure 5.1: Location of Connecting Road (Source: TCP1 2023)

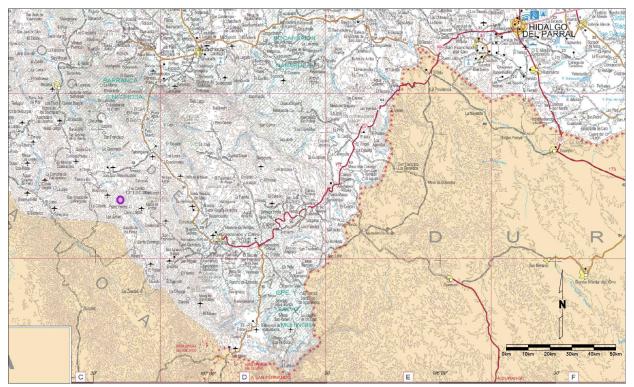


Figure 5.2: Location of Cristina project in the Guadalupe y Calvo Municipality (source: IMC/TCP1 2022)

5.3 Climate and Operating Season

The average temperature for the Guadalupe y Calvo municipality ranges from a high of 19° C in June to 7° C in January. The average annual precipitation for the municipality is 1.1-1.2 meters of precipitation per year. The majority of the precipitation occurs in the months of July through September. The project site can get snow in the wintertime, but the climate of the area is favorable to year-round operation.

5.4 Surface Rights, Power, Water and Infrastructure

The land on which the mining claims are located is owned by the Ejido Cinco Llagas. An agreement was signed with the Ejido Cinco Llagas in 2014 that gave Criscora the right to occupy the land for exploration and exploitation. This agreement only applies to the original 8 mining claims covering the main Cristina property. An additional agreement would have to be reached for the remainder of the Criscora mining claims.

Two different 3 phase powerlines run within 7 km of the Cristina property, one to the east and one to the west.

The Basonopa river could be a potential source for process water. Also, the agreement with the Ejido Cinco Llagas provides for the use of groundwater in the exploitation of minerals.

Buildings on the property include core sheds, a covered core logging area, a mess hall and an 8 room building of offices and dorm rooms.

6 History

Gold was discovered at the Cristina property in the 1880's. Mineralized material was mined from outcropping and near surface veins in the late 1800's and early 1900's. The primary method of processing the ore was crushing followed by amalgamation.

6.1 Francisco and Glamis Gold

Francisco Gold staked the original claims in 2002. Glamis Gold later acquired Francisco Gold in 2002. Between 2003 and 2006, Francisco and Glamis Gold performed a geologic survey of the Cristina property, and took surface samples of vein outcrops with emphasis placed on the Guadalupe, La Estrella and El Carmen areas.

6.2 Goldcorp

Goldcorp acquired Glamis Gold in 2006. The majority of the non-drilling exploration work completed on the property was completed by Goldcorp. In 2007, Goldcorp collected over 1,600 surface samples and geologically mapped the Cristina property at 1:10,000 scale. They also had a petrographic analysis performed on some of the surface vein samples in 2007. Additional geological mapping was completed in 2011, with a focus on the Hilo de Oro and La Estrella areas. Between 2010 and 2015, Goldcorp drilled 22,430 meters in 61 core holes at the Cristina project.

6.3 Oro Premier

The property was optioned to Oro Premier in 2016 who drilled 7,169 meters in 22 core holes in the property between 2016 and 2017.

6.4 TCP1

TCP1 purchased the Cristina project in 2018. In 2018 and 2019, TCP1 applied for additional mining concessions adjacent to the Cristina property which will expand their land holdings to 65,600 hectares once they are awarded. TCP1 drilled 40,587 meters in 140 core holes on the Cristina project between 2018 and 2022.

7 Geological Setting and Mineralization

7.1 Regional Geology

The Sierra Madre Occidental mountain range was formed in the Cretaceous-Cenozoic period by magmatic and tectonic episodes resulting from the subduction of the Farallon plate under the North-American plate. A simplified geologic and tectonic map of Northwest Mexico is provided in Figure 7.1.

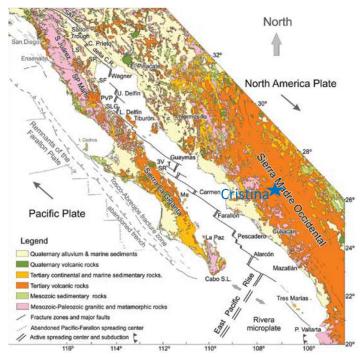


Figure 7.1: Geologic and Tectonic map of Northwestern Mexico (Base Map: Baranjas 2014, Project Location: IMC 2022)

Basement rocks are made up of Proterozoic-Paleozoic continental shelf overlaid by metamorphized Paleozoic-Mesozoic sedimentary rocks. The volcanic stratigraphy of the region is divided into two groups: the "Lower Volcanic Complex" and the "Upper Volcanic Supergroup". The Upper Volcanic Supergroup is generally unmineralized while the Lower Volcanic Complex hosts a variety of ore deposits.

The Laramide Orogeny produced significant plutonic and volcanic calc-alkaline rocks which form the Lower Volcanic Complex. Batholiths range from Diorite to Granite, whereas volcanic sequences forming in the same period are dominated by andesitic lava flows. Rocks forming the Lower Volcanic Complex in Northwest Mexico range in age from 40 to 90 Ma.

Towards the end of the Laramide Orogeny contractile deformation, formed E-W to ENE-WSW trending tension fractures within the Lower Volcanic Complex. These structures host many of the Cu-Mo porphyry deposits of the Sierra Madre Occidental.

The Upper Volcanic Supergroup was formed from two ignimbritic Pulses during the Oligocene and early Miocene. This stratigraphic group comprises rhyolitic ignimbrites, tuffs, silicic to intermediate lavas, and lesser mafic lavas.

In the middle to late Miocene, extensional tectonics produced NNW-SSE normal fault systems in the western Sierra Madre Occidental.

(Source for Section 7.1: Ferrari 2005)

7.2 Local Geology

For reference, the lithologies encountered in the geologic column at the Cristina project are provided in Figure 7.2. A geologic map of the Cristina project area is provided in Figure 7.3.

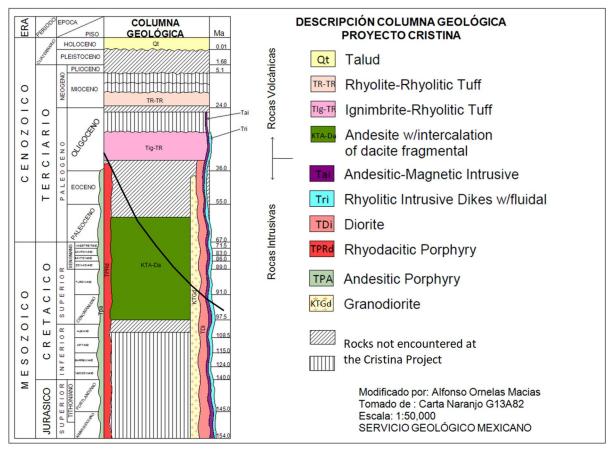


Figure 7.2: Lithologies Present in the Geologic Column at Cristina

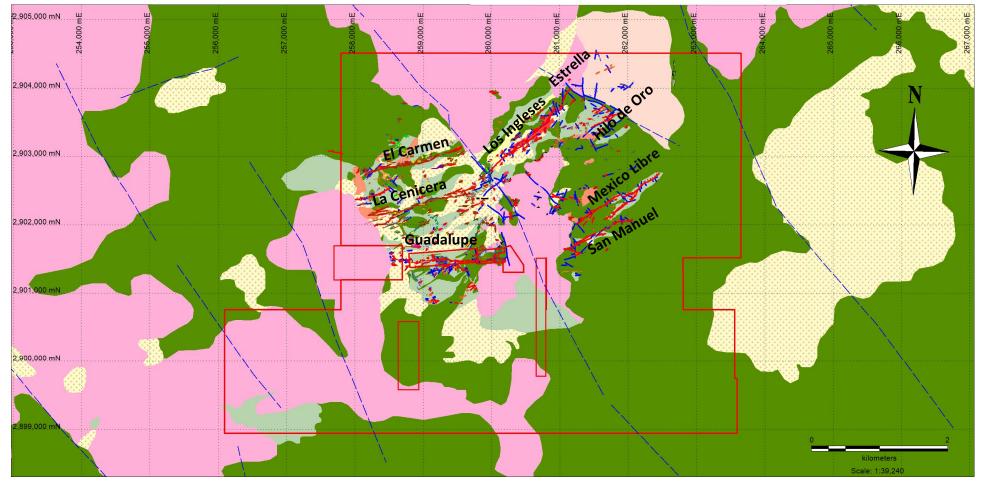


Figure 7.3: Geologic Map of the Cristina Project with Vein Names

In the early to mid-tertiary, the property probably hosted an andesite volcano. The geology of the property is an andesitic volcanic sequence, intercalated locally with dacitic intrusions and related lava flows and breccias. This sequence is cut by andesitic and granodioritic porphyry dikes following numerous NE-SW and E-W trending faults. Granodiorite intrusions are fine to medium grained, equigranular to porphyritic, having seriate texture in locations. Two distinct periods of andesite intrusions occurred. Older andesite intrusions are fine grained with 5-10% rounded feldspar phenocrysts. Younger andesite intrusions have larger twinned feldspar and blocky amphibole phenocrysts. Silicification, quartz veining and other forms of hydrothermal alteration and mineralization occurred around intrusions.

The upward pressure from the ascending magma probably caused minor doming, and the collapse of the system resulted in minor ring fracture development. These rocks are generally considered part of the Tarahumara Formation regionally. These are overlain by a post-mineral rhyolite package, which is correlated with a calc-alkaline volcanic sequence of the Upper Volcanic Supergroup.

7.3 Deposit Geology

Generally, veins at the Cristina project that have been drilled are sub-vertical and outcrop at the surface. The eastern end of the Guadalupe vein and southwestern end of the Mexico Libre vein are overlain by a barren Rhyolite cap.

Rocks in the vein zones exhibit multiple episodes of stockwork quartz veining with and without pyrite, with local traces of chlorite and secondary biotite. Some fine-grained porphyritic andesite dikes show less quartz veining and more epidote alteration. In dike rocks, epidote occurs in the rock matrix, replacing feldspar phenocrysts and as veins (Figure 7.4 A). In some dikes, epidote veins have pyrite and tourmaline cores, and locally epidote veins have wide tourmaline veins, rarely K-spar (Figure 7.4 C). Early epidote veins are commonly cut by fuzzy, irregular, dark gray tourmaline veins, which are cut by late quartz veins (Figure 7.4 B). Epidote generally forms above 230° C and is susceptible to replacement by calcite where CO₂-rich fluids are active. Peripheral to dikes, the andesite and granodiorite are strongly sheared and exhibit stockwork veining. Pyrite generally comprises 2% of the rock and about 10-40% of the rock is silicified. Figure 7.4 D shows an image of a quartz pyrite vein encountered in drilling.

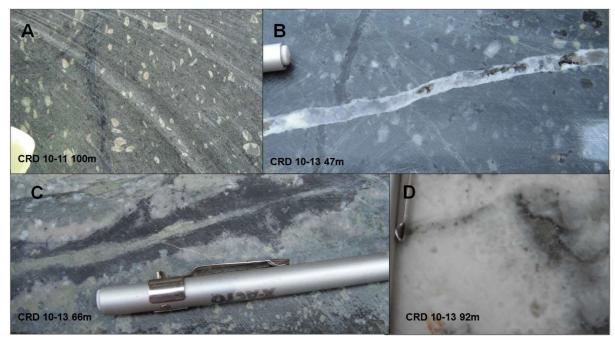


Figure 7.4: Andesite Dike Rocks, Epidote, Tourmaline and Quartz Veins

Prior to most silicification, host rocks were cut by several stages of hydrothermal brecciation. Breccia fragments and matrix material consists largely of andesite, with minor fragments of silicified rock, quartz veins, rhyolite, fine grained schist, hornfels and phyllite. Most hydrothermal breccias are strongly silicified, with silica replacing the breccia matrix. Locally, breccias experienced one or more stages of fine-grained calcite and dolomite replacement of the matrix.

Hydrothermal brecciation was followed by an early stage of carbonate flooding of matrix material; fractures and cavities were lined with comb textures of pale pink dolomite crystals. This was closely followed by clear to gray quartz veining, coarse-grained pyrite deposition, and silicification that locally replaced carbonate. Continued hydrothermal brecciation shattered the rocks, resulting in numerous silicified fragments in later breccias (Figure 7.5 A and B). Strong micro quartz veining cut large pyrite crystals into many pieces (Figure 7.5 A, B and D). Rounded fragments lined with comb quartz and silicified dolomite crystals occur as fragments within the breccias and in many cases, shattered fragments within younger breccias (Figure 7.5 A and B). Carbonate was largely replaced by silica, leaving remnant comb textures (Figure 7.4 D and Figure 7.5 C). Late quartz veins include amethyst, possibly indicating higher volumes of other elements in later hydrothermal fluids. Bladed calcite structures are present but rare, suggesting rapid deposition of carbonate may not have been common. Early stages of quartz stockwork and silicification appear porphyry related, but do contain low-level precious metal and lead-zinc mineralization. These zones are locally cut by tourmaline veins, replacement zones, and younger andesite porphyry.

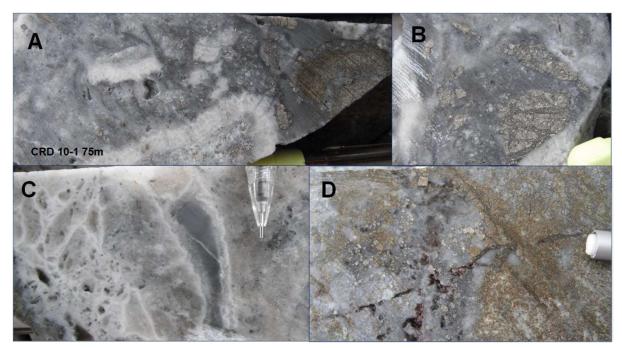


Figure 7.5: Hydrothermal Breccia and Quartz Vein Textures

7.4 Mineralization

Mineralization is considered to be epithermal to mesothermal, gold-silver with base metal veins. High grade gold tends to be in banded quartz veins with calcite replacement textures, adularia and amethyst and always associated with lead, zinc and copper. Most veins have widths ranging from 4 to 10 meters. In some areas, quartz-rich veins are older and cut younger massive sulfide veins, giving the impression that there are many stages of overlapping mineralization. Generally, higher precious metal grades are encountered in veins with andesite in both the foot and hanging wall, as compared with veins between an andesite/granodiorite contact.

The primary veins host crustiform quartz, often with sulfide bands, quartz-adularia and breccias with gray chalcedonic quartz, crystalline quartz and locally opal. Fault breccias, igneous breccia, and locally hydrothermal breccias are present. These are commonly cemented by crystalline quartz and sulfide minerals consisting of pyrite, sphalerite, galena and chalcopyrite. Sulfosalt minerals are present with the higher gold and silver contents. Typical mineralized vein material with sulfosalts(red) can be seen in Figure 7.6 below.

Figure 7.6: Quartz-Carbonate-Sulfide Vein

The mineralized vein in Figure 7.6 is located in the western extents of drilling in the Guadalupe vein. Figure 7.7 shows an intercept of the eastern end of the Guadalupe vein beneath the Rhyolite cap. This is a zone of quartz-sphalerite-galena-pyrite veinlets emplaced in andesite showing sericitic and chloritic alteration.

Figure 7.7: Mineralized Interval in Eastern End of Guadalupe Vein

In the north part of the project, gold is associated with base metals and quartz adularia veins in close proximity to an intrusion. In hole CRD15-53, at a depth of 167m, an adulariarich vein (Los Ingleses) has high-grade gold and up to 10 percent galena and sphalerite on the margins. This intercept is shown in Figure 7.8

Drill Hole CRD15-53

From 165.50m to 169.50m, 4m of 7.83g Au/t and 118g Ag/t; including 1.3m of 20.7g Au/t and 199g Ag/t from 166.70m to 168.00m

Figure 7.8: Adularia-rich Vein with Galena and Sphalerite on Margins

A massive milky quartz vein containing galena, sphalerite and pyrite of the Mexico Libre vein is shown in Figure 7.9.

Figure 7.9: Massive Milky Quartz Vein in Mexico Libre

8 Deposit Type

Mineralization at Cristina appears to occur in a low-sulfidation epithermal to mesothermal deposit, hosting gold-silver with base metal veins. At the surface hydrothermal breccias, gold-rich quartz stockworks and silicified zones with minor Ag-Pb-Zn values are emplaced within several broad fault zones. Mineralization is closely associated with andesite porphyry intrusions and epidote-tourmaline alteration. The porphyry style alteration and veining is cut by a later stage of banded quartz-carbonate veins, which formed within major faults. These veins contain coarse sulfide bands, locally rich in Au, Ag, Zn and Pb. Gold grades are generally less than 1 g/t but occur elevated locally in "high grade shoots". The property covers a large area with many broad vein targets and appears to have good exploration potential.

9 Exploration

The previous owners collected rock and soil samples along veins in a systematic and representative fashion to identify drill targets; exploration work performed by previous owners has been discussed in Section 6. Current exploration expanded on the surface sampling in an effort to find extensions of current veins and new veins. A total of 204 widely spaced rock samples were taken over an area of around 12 square kilometers. The majority of this sampling was done in a representative fashion with channel style samples with hammer and chisel, perpendicular to the vein exposures. There has not been systematic sampling in the new veins and vein extensions, to date.

10 Drilling

All of the drilling completed to date on the Cristina Project has been HQ and NTW diameter diamond core drilling. The Cristina Project has been drilled by three companies: Goldcorp, Oro Premier and TCP1. Drilling began in 2010. Drilling that has been included in this Technical Report was completed between 2010 and 2022.

Drill holes in the Southern veins have typically been drilled from the hanging wall at intersecting angles between 30 and 50 degrees. Holes in the north are drilled from both the footwall and hanging wall and intersect the veins at angles between 20 and 45 degrees.

All drilling under TCP1/Criscora was completed by drilling contractor Energold with the exception of 13% of 2020 drilling was completed by contractor MW Drilling.

TCP1/Criscora has completed 40,586 meters of drilling since acquiring the project which represents 58% of the drilling to date. The majority of their drilling was focused on extending and infilling the Guadalupe/Mexico Libre vein system which they had success with. They also completed drilling at the San Francisco and Cenicera targets to increase their understanding of the mineralization controls in those areas.

In total, 223 diamond drill holes have been drilled at the Cristina Project.

10.1 Drilling Programs

A summary by year of the drilling completed on the Cristina Property is provided in Table 10.1. A map showing the locations of the drill holes is provided in Figure 10.1. Traces of the high-grade veins at an elevation of 1,300m are shown on the map.

holes drilled Meters Drilled Company Area Targeted Year 2010 2,095 El Carmen, La Cenicera, Guadalupe 13 2011 5,271 Guadalupe, Hilo de Oro 14 21 Goldcorp 2012 8,847 Guadalupe 5 2014 2,091 La Cenicera, El Carmen 2015 8 4,126 El Carmen, Los Ingleses, Estrella 2016 3 1,668 Oro Premier 2017 19 5,501 Guadalupe, El Carmen 2018 13 4,023 Guadalupe, San Manuel, Mexico Libre 2019 45 12,531 Guadalupe, San Manuel, Mexico Libre, El Carmen TCP1/Criscora 2020 54 15,101 El Carmen, La Cenicera, Guadalupe, Mexico Libre, San Manuel, San Francisco 2022 28 8,931 Guadalupe, San Francisco Total 223 70,187

Table 10.1: Summary of Drilling by Year

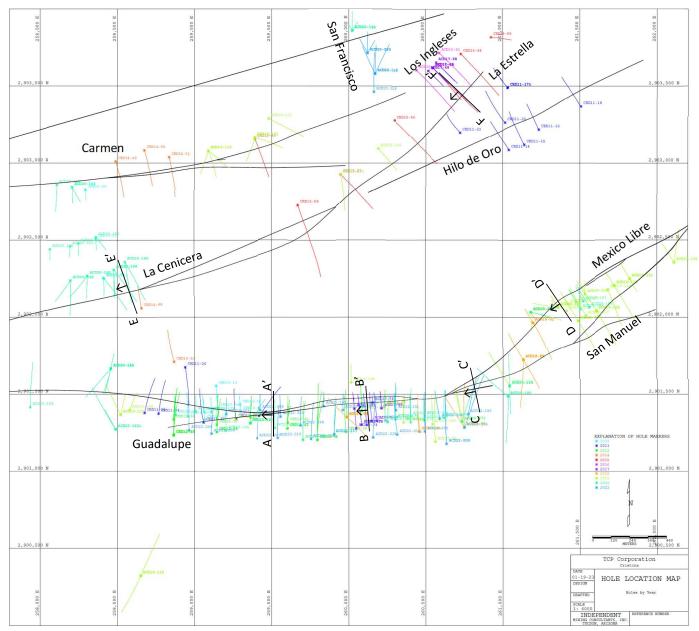


Figure 10.1: Hole Location Map (source: IMC 2023)

10.2 Cross Sections of Drill Holes

Representative cross sections of drilling at the Cristina project are provided in this section. The cross sections show drilling and outlines of vein/grade solids that were provided by TCP1. For cross sections A-A' through E-E', drill holes within 50 meters each direction from the cross section are shown on the cross section. In cross section F-F', the window is 30 meters in each direction from the cross section. Equivalent gold grade (Aueq) (g/t) and the interval's "from" depth are shown in the cross sections. Aueq values above 0.35 g/t are shown in color. Aueq is calculated as described in the footnotes of Table 10.2 . Shown on the Figures are High Grade Solids-Red; Low Grade Solids-Blue, Barren Rhyolite – Green, and Topo-Black.

The drill hole collar information and downhole relevant intervals for all drill holes are provided in Table 10.2.

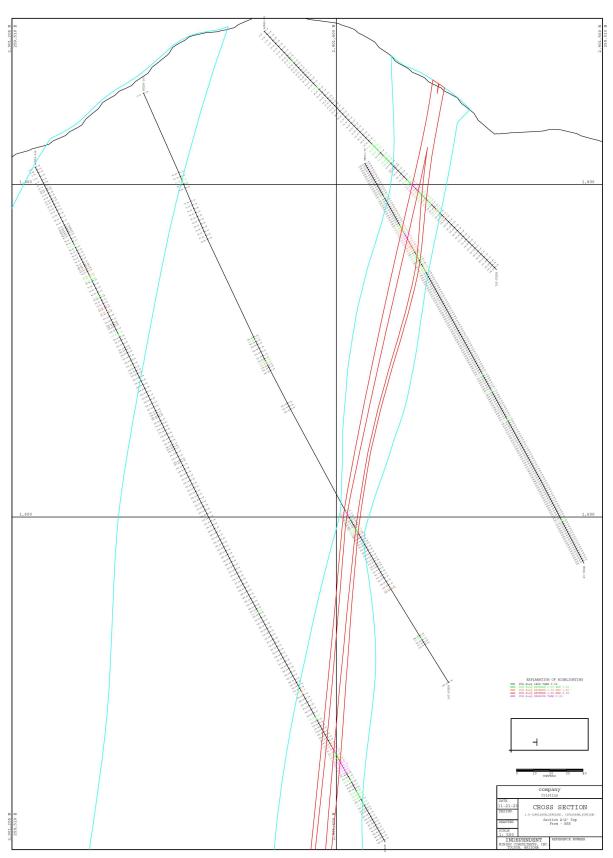


Figure 10.2: Section AA

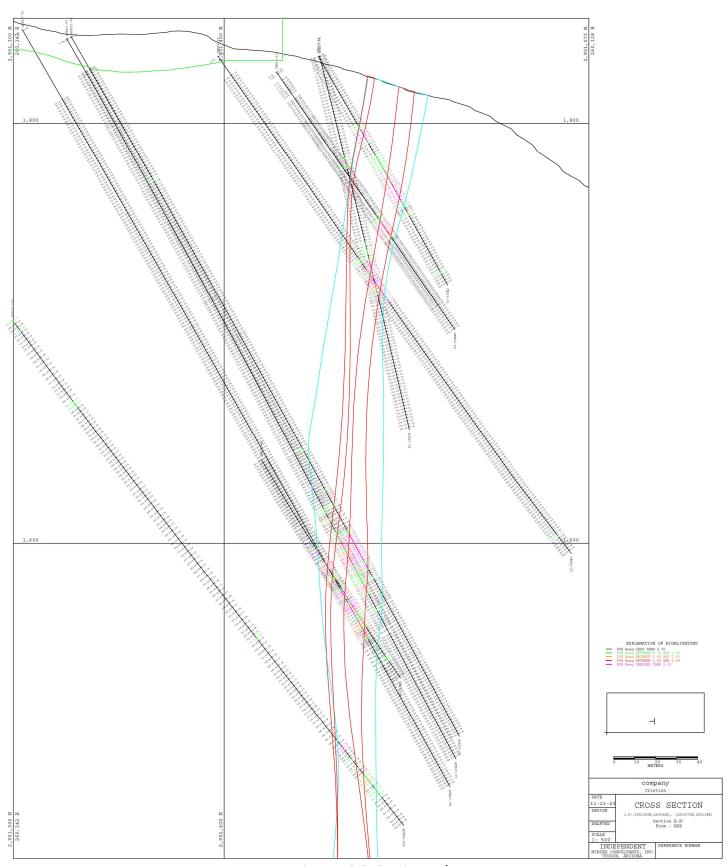


Figure 10.3: Section BB'

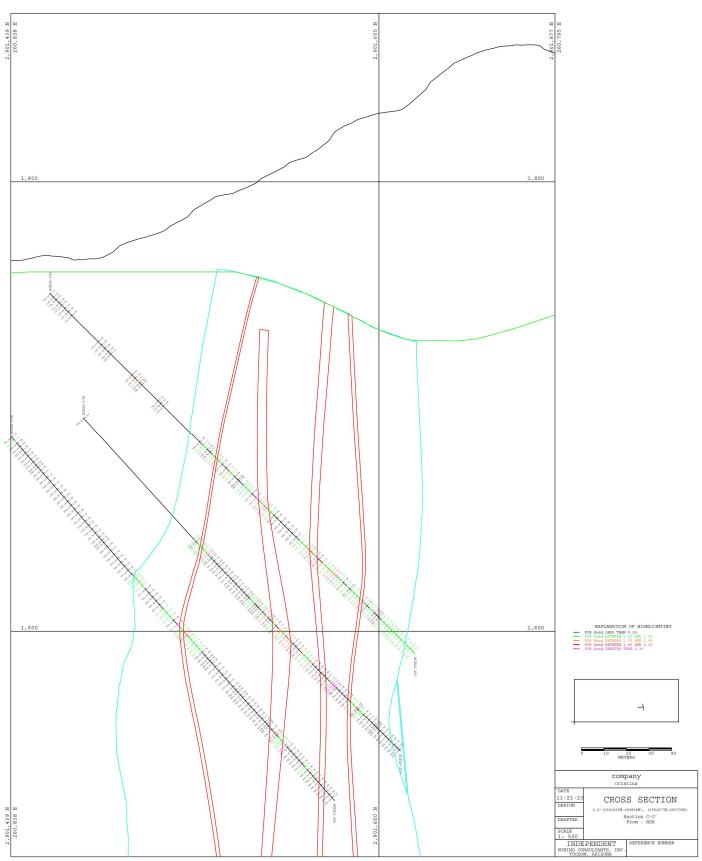


Figure 10.4: Section CC'

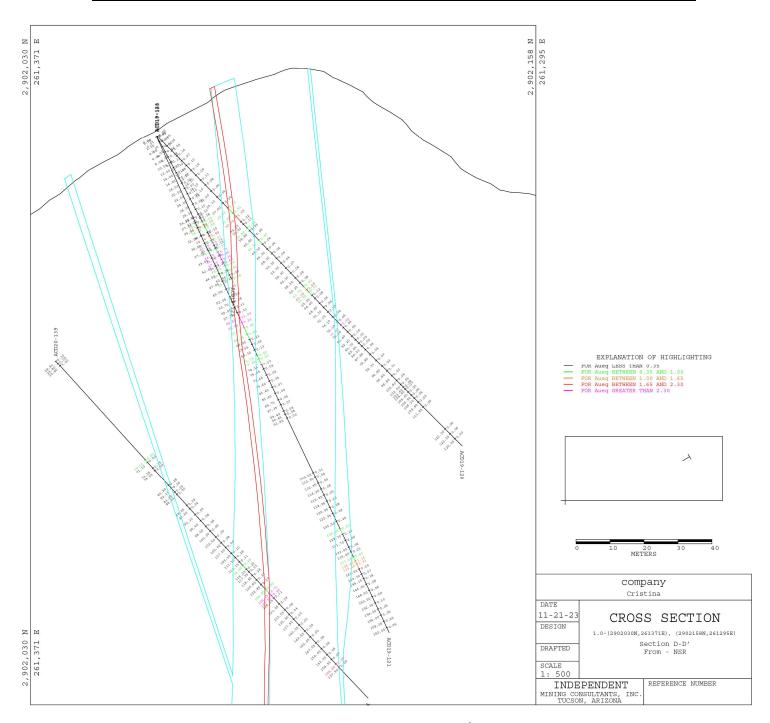


Figure 10.5: Section DD'

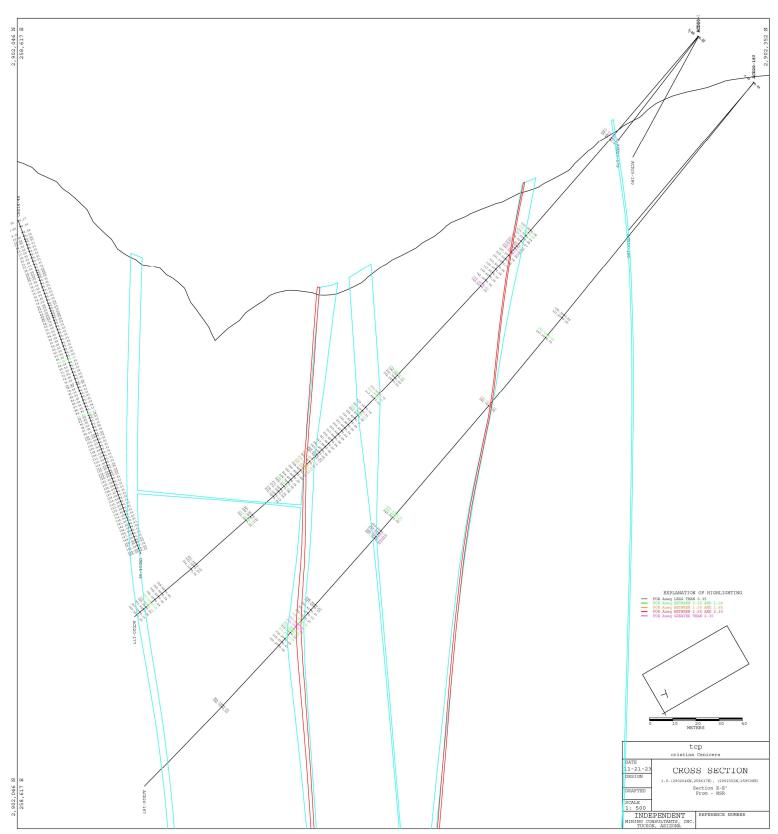


Figure 10.6: Section EE'

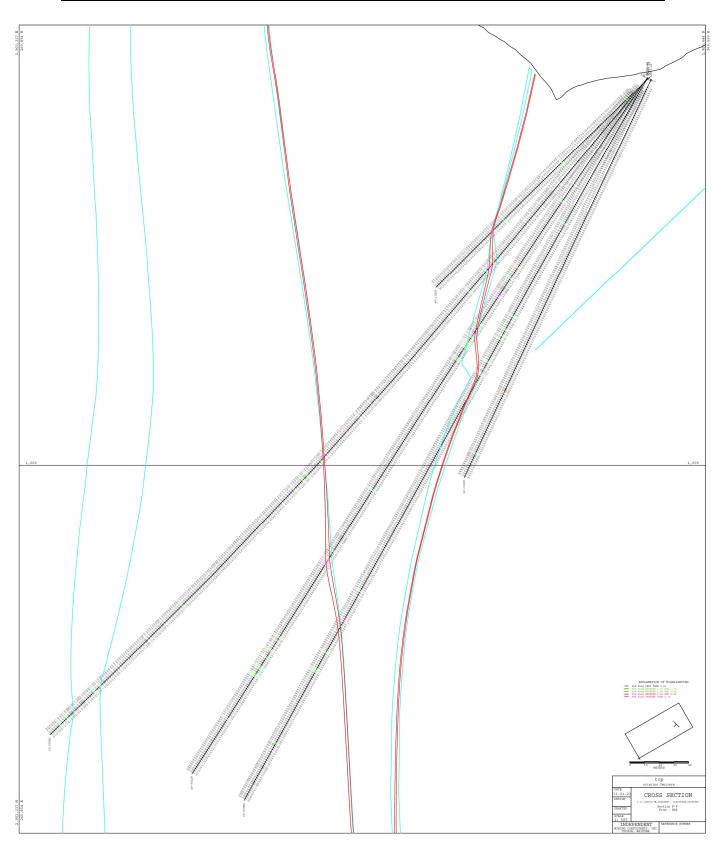


Figure 10.7: Section FF'

Table 10.2 Relevant Drillhole Intervals

		_			Tai	DIC I	J. 2 IVC	ic varie i	וווווו		civais	,			
		from	to	length	true width	Au	Ag	Pb	Zn	Cu	AuEq				
		m	m	m	m	g/t	g/t	%	%	%	g/t	_		_	
Hole ID:	CRD10-01	X (m):	258,879.6	Y (m):	2,901,366.7	Z (m):	1978.7	Dip (deg):	50	Az. (deg):	355	Area:	Guadalupe Sur	Company:	GOLDCORP
		74.75	129.5	54.75	34.5	0.23	13.6	0.03	0.13	0.01	0.52				
		115	115.9	0.9	0.6	0.76	182.0	0.10	0.33	0.07	3.62				
		152.2	165.0	12.85	8.1	0.40	24.0	0.03	0.09	0.02	0.82				
Hole ID:	CRD10-02	X (m):	258,957.8	Y (m):	2,901,356.6	Z (m):	1997.6	Dip (deg):	50	Az. (deg):	355	Area:	Guadalupe Sur	Company:	GOLDCORP
		29.95	35.6	5.65	3.6	0.19	13.8	0.05	0.19	0.02	0.53				
	including	33.55	34.4	0.85	0.5	0.41	50.0	0.05	0.09	0.05	1.26				
		60.5	104.8	44.3	28.4	0.28	9.9	0.05	0.17	0.01	0.55				
	including	78.15	80.0	1.8	1.2	2.50	61.0	0.43	0.95	0.04	4.08				
		133.8	144.5	10.7	6.8	0.36	15.0	0.05	0.17	0.02	0.71				
Hole ID:	CRD10-03	X (m):	259,062.3	Y (m):	2,901,385.6	Z (m):	2012.3	Dip (deg):	50	Az. (deg):	355	Area:	Guadalupe Sur	Company:	GOLDCORP
		25	53.5	28.5	22.8	0.19	5.2	0.02	0.04	0.01	0.31				
		75	93.5	18.5	14.8	0.40	24.7	0.11	0.24	0.03	0.95				
	including	81.2	83.8	2.55	2.0	0.77	83.5	0.41	0.87	0.04	2.63				
		112.9	132.5	19.6	15.7	0.83	24.9	0.09	0.66	0.14	1.77				
	including	113.9	119.8	5.9	4.7	2.08	66.2	0.23	1.97	0.42	4.78				
		152.3	156.0	3.7	3.0	0.40	8.3	0.05	0.11	0.02	0.62				
Hole ID:	CRD10-04	X (m):	259,152.5	Y (m):	2,901,410.8	Z (m):	1985.2	Dip (deg):	50	Az. (deg):	355	Area:	Guadalupe Sur	Company:	GOLDCORP
		50.5	90.0	39.5	32.0	0.64	40.8	0.11	0.27	0.09	1.53				
	including	80.2	83.3	3.1	2.5	3.50	369.6	0.70	2.03	0.59	10.92				
	including	88.8	90.0	1.2	1.0	0.54	77.0	0.27	0.35	0.77	3.09				
Hole ID:	CRD10-05	X (m):	259,295.6	Y (m):	2,901,432.8	Z (m):	1959.1	Dip (deg):	50	Az. (deg):	355	Area:	Guadalupe Sur	Company:	GOLDCORP
		51	62.3	11.3	9.2	0.52	16.1	0.08	0.31	0.07	1.05				
	including	54	59.9	5.9	4.8	0.61	17.4	0.10	0.42	0.09	1.24				
		103.4	105.5	2.15	1.7	0.27	8.5	0.28	1.08	0.05	1.14				
Hole ID:	CRD10-06	X (m):	259,299.6	Y (m):	2,901,389.0	Z (m):	1942.0	Dip (deg):	50	Az. (deg):	355	Area:	Guadalupe Sur	Company:	GOLDCORP
		103.5	124.5	21	16.6	0.57	24.7	0.36	0.49	0.06	1.41				
	including	112.5	114.0	1.5	1.2	1.54	97.8	1.42	1.91	0.16	4.70				
	including	118.5	121.5	3	2.4	0.59	22.1	0.93	1.28	0.03	1.98				
Hole ID:	CRD10-07	X (m):	258,360.5	Y (m):	2,902,507.6	Z (m):	2016.5	Dip (deg):	50	Az. (deg):	175	Area:	El Carmen - La Cenicera	Company:	GOLDCORP
		78	83.5	5.5	3.5	0.83	15.0	0.07	0.21	0.02	1.22				
Hole ID:	CRD10-08	X (m):	258,409.4	Y (m):	2,902,256.9	Z (m):	2011.4	Dip (deg):	50	Az. (deg):	175	Area:	El Carmen - La Cenicera	Company:	GOLDCORP
		51.85	55.1	3.2	2.0	1.26	71.5	0.08	1.12	0.20	3.20				
	including	51.85	52.6	0.75	0.5	4.45	253.0	0.27	4.36	0.85	11.71				
		155.8	164.4	8.65	5.4	0.28	5.6	0.02	0.06	0.02	0.42	_		_	
Hole ID:	CRD10-09	X (m):	258,294.3	Y (m):	2,902,826.6	Z (m):	2019.7	Dip (deg):	60	Az. (deg):	175	Area:	El Carmen - La Cenicera	Company:	GOLDCORP
		52.5	63.0	10.5	5.3	0.38	32.4	0.09	0.23	0.05	1.07				
	including	54	55.5	1.5	0.8	0.79	113.0	0.29	0.60	0.03	2.85				
Hole ID:	CRD10-10	X (m):	260,097.5	Y (m):	2,901,421.8	Z (m):	1824.4	Dip (deg):	55	Az. (deg):	355	Area:	Guadalupe Este	Company:	GOLDCORP
		84.9	96.2	11.25	7.2	0.89	70.7	0.21	0.88	0.03	2.48				
	including	87.3	94.3	7	4.5	1.28	108.3	0.28	1.12	0.05	3.57				
	including	91.25	94.3	3.1	2.0	1.74	180.8	0.13	1.05	0.02	4.91				
Hole ID:	CRD10-11	X (m):	260,155.5	Y (m):	2,901,446.9	Z (m):	1831.8	Dip (deg):	60	Az. (deg):	355	Area:	Guadalupe Este	Company:	GOLDCORP
		40.5	86.0	45.5	25.9	0.61	131.5	0.22	0.46	0.03	2.82				
	including	43.5	46.5	3	1.7	1.31	249.0	0.31	0.07	0.04	5.01				
	including	71.5	80.0	8.5	4.8	1.60	429.3	0.65	1.75	0.08	8.91			_	
Hole ID:	CRD10-12	X (m):	259,066.2	Y (m):	2,901,334.8	Z (m):	1999.4	Dip (deg):	50	Az. (deg):	355	Area:	Guadalupe Sur	Company:	GOLDCORP
		133.5	142.1	8.6	6.8	0.31	7.9	0.04	0.20	0.01	0.56				
	including	140.9	142.1	1.25	1.0	0.83	30.7	0.20	0.78	0.02	1.78				
		166	182.0	16	12.6	0.30	9.0	0.04	0.11	0.02	0.53				
		202.2	211.5	9.3	7.3	0.23	10.7	0.03	0.06	0.01	0.44				
Hala IB.	including	207	208.5	1.5	1.2	0.65	33.3	0.02	0.03	0.03	1.18	•	Constalous a Nauta		GOLDCORP
Hole ID:	CRD10-13	X (m):	259,140.0	Y (m):	2,901,553.6	Z (m):	1914.0	Dip (deg):	45	Az. (deg):	175	Area:	Guadalupe Norte	Company:	GOLDCORP
		9	25.4	16.35	14.2	0.23	6.7	0.02	0.06	0.03	0.41				
		41.5	45.5	4	3.5	0.22	4.9	0.03	0.11	0.01	0.38				
		57.3	58.5	1.2	1.0	0.15	13.8	0.03	0.58	0.06	0.75				
		82	85.0	3	2.6	0.20	7.6	0.10	0.18	0.01	0.45				
Hole ID:	CRD11-14	130.6 Y (m):	149.0 261,040.1	18.4 V (m):	15.8 2.903.084.6	0.25 Z (m):	4.7 1558.5	0.02	0.06 55	0.01	0.37 330	Arca	Hilo de Oro	Company:	GOLDCORP
HOIR ID:	CND11-14	X (m): 115		Y (m): 1.5	2,903,084.6 0.9	2 (m): 0.27	19.2	Dip (deg):		Az. (deg): 0.02	1.40	Area:	niio de Oro	company:	GOLDCORP
		204	116.5					0.66	1.10						
	inaludina	204	206.0 206.0	2 1	1.2 <i>0.6</i>	0.93 1.48	37.0 50.1	0.33 <i>0.52</i>	0.87 1.37	0.04 <i>0.06</i>	2.09 3.19				
Hole ID:	including CRD11-15				2,903,118.8	Z (m):	1500.4		55			Area:	Hilo de Oro	Company:	GOLDCORP
Hole ID:	CKD11-15	X (m):	261,139.6	Y (m):				Dip (deg): 0.18	0.51	Az. (deg):	330	Area:	HIIO de Oro	company:	GOLDCORP
Hole ID:		261 X (m):	262.5 261,234.2	1.5 Y (m):	0.8 2,903,215.8	0.10 Z (m):	6.8 1469.0	Dip (deg):	55	0.02 Az. (deg):	0.57 330	Area:	Hilo de Oro	Company:	GOLDCORP
			201,234.2	. ().				0.37	1.00	0.03	1.44	Alca.	Tillo de Oto	company.	GOLDCOM
	CRD11-16			1 -					1.00						
		136	137.5	1.5 V (m):	0.9	0.44	20.1					Aron	Los Inglosos La Estrolla	Company	COLDCORD
Hole ID:	CRD11-17	136 X (m) :	137.5 261,033.3	Y (m):	2,903,490.2	Z (m):	1391.9	Dip (deg):	60	Az. (deg):	320	Area:	Los Ingleses - La Estrella	Company:	GOLDCORP
		136 X (m): X (m):	137.5 261,033.3 261,034.9	Y (m): Y (m):	2,903,490.2 2,903,488.2	Z (m): Z (m):	1391.9 1392.0	Dip (deg): Dip (deg):	60 65	Az. (deg): Az. (deg):	320 320	Area: Area:	Los Ingleses - La Estrella Los Ingleses - La Estrella	Company: Company:	GOLDCORP GOLDCORP
Hole ID:	CRD11-17	136 X (m): X (m): 222.5	137.5 261,033.3 261,034.9 224.0	Y (m): Y (m): 1.5	2,903,490.2 2,903,488.2 0.6	Z (m): Z (m): 0.39	1391.9 1392.0 1.4	Dip (deg): Dip (deg): 0.09	60 65 0.34	Az. (deg): Az. (deg): 0.00	320 320 0.63		•		
Hole ID:	CRD11-17	136 X (m): X (m): 222.5 264	137.5 261,033.3 261,034.9 224.0 265.0	Y (m): Y (m): 1.5 1	2,903,490.2 2,903,488.2 0.6 0.4	Z (m): Z (m): 0.39 0.21	1391.9 1392.0 1.4 20.2	Dip (deg): Dip (deg): 0.09 0.82	60 65 0.34 0.92	Az. (deg): Az. (deg): 0.00 0.04	320 320 0.63 1.35		•		
Hole ID:	CRD11-17	136 X (m): X (m): 222.5 264 302	137.5 261,033.3 261,034.9 224.0 265.0 303.5	Y (m): Y (m): 1.5 1	2,903,490.2 2,903,488.2 0.6 0.4 0.6	Z (m): Z (m): 0.39 0.21 0.96	1391.9 1392.0 1.4 20.2 2.9	Dip (deg): Dip (deg): 0.09 0.82 0.02	60 65 0.34 0.92 0.07	Az. (deg): Az. (deg): 0.00 0.04 0.00	320 320 0.63 1.35 1.05		•		
Hole ID:	CRD11-17	136 X (m): X (m): 222.5 264 302 340	137.5 261,033.3 261,034.9 224.0 265.0 303.5 342.0	Y (m): Y (m): 1.5 1 1.5	2,903,488.2 0.6 0.4 0.6 0.8	Z (m): Z (m): 0.39 0.21 0.96 0.38	1391.9 1392.0 1.4 20.2 2.9 5.2	Dip (deg): 0.09 0.82 0.02 0.11	60 65 0.34 0.92 0.07 0.32	Az. (deg): Az. (deg): 0.00 0.04 0.00 0.02	320 320 0.63 1.35 1.05 0.69		•		
Hole ID:	CRD11-17	136 X (m): X (m): 222.5 264 302 340 351	137.5 261,033.3 261,034.9 224.0 265.0 303.5 342.0 368.0	Y (m): Y (m): 1.5 1 1.5 2 17	2,903,490.2 2,903,488.2 0.6 0.4 0.6 0.8 6.8	Z (m): Z (m): 0.39 0.21 0.96 0.38 0.25	1391.9 1392.0 1.4 20.2 2.9 5.2 9.1	Dip (deg): 0.09 0.82 0.02 0.11	60 65 0.34 0.92 0.07 0.32 0.71	Az. (deg): Az. (deg): 0.00 0.04 0.00 0.02 0.05	320 320 0.63 1.35 1.05 0.69 0.87		•		
Hole ID: Hole ID:	CRD11-17 CRD11-17B	136 X (m): X (m): 222.5 264 302 340 351 386	137.5 261,033.3 261,034.9 224.0 265.0 303.5 342.0 368.0 397.5	Y (m): Y (m): 1.5 1 1.5 2 17 11.5	2,903,490.2 2,903,488.2 0.6 0.4 0.6 0.8 6.8 4.6	Z (m): Z (m): 0.39 0.21 0.96 0.38 0.25 0.16	1391.9 1392.0 1.4 20.2 2.9 5.2 9.1 10.6	Dip (deg): Dip (deg): 0.09 0.82 0.02 0.11 0.12 0.09	60 65 0.34 0.92 0.07 0.32 0.71 0.74	Az. (deg): Az. (deg): 0.00 0.04 0.00 0.02 0.05 0.05	320 320 0.63 1.35 1.05 0.69 0.87 0.82	Area:	Los Ingleses - La Estrella	Company:	GOLDCORP
Hole ID:	CRD11-17	136 X (m): X (m): 222.5 264 302 340 351 386 X (m):	137.5 261,033.3 261,034.9 224.0 265.0 303.5 342.0 368.0 397.5 261,508.0	Y (m): Y (m): 1.5 1 1.5 2 17 11.5 Y (m):	2,903,490.2 2,903,488.2 0.6 0.4 0.6 0.8 6.8 4.6 2,903,365.9	Z (m): Z (m): 0.39 0.21 0.96 0.38 0.25 0.16 Z (m):	1391.9 1392.0 1.4 20.2 2.9 5.2 9.1 10.6 1373.5	Dip (deg): Dip (deg): 0.09 0.82 0.02 0.11 0.12 0.09 Dip (deg):	60 65 0.34 0.92 0.07 0.32 0.71 0.74 55	Az. (deg): Az. (deg): 0.00 0.04 0.00 0.02 0.05 0.05 Az. (deg):	320 320 0.63 1.35 1.05 0.69 0.87 0.82 320		•		
Hole ID: Hole ID: Hole ID:	CRD11-17 CRD11-17B	136 X (m): X (m): 222.5 264 302 340 351 386 X (m): 192	137.5 261,033.3 261,034.9 224.0 265.0 303.5 342.0 368.0 397.5 261,508.0 194.0	Y (m): Y (m): 1.5 1 1.5 2 17 11.5 Y (m): 2	2,903,490.2 2,903,488.2 0.6 0.4 0.6 0.8 6.8 4.6 2,903,365.9	Z (m): Z (m): 0.39 0.21 0.96 0.38 0.25 0.16 Z (m): 1.85	1391.9 1392.0 1.4 20.2 2.9 5.2 9.1 10.6 1373.5 66.6	Dip (deg): Dip (deg): 0.09 0.82 0.02 0.11 0.12 0.09 Dip (deg): 0.47	60 65 0.34 0.92 0.07 0.32 0.71 0.74 55 1.99	Az. (deg): Az. (deg): 0.00 0.04 0.00 0.02 0.05 0.05 Az. (deg): 0.14	320 320 0.63 1.35 1.05 0.69 0.87 0.82 320 4.23	Area:	Los Ingleses - La Estrella Hilo de Oro	Company:	GOLDCORP
Hole ID: Hole ID:	CRD11-17 CRD11-17B	136 X (m): X (m): 222.5 264 302 340 351 386 X (m): 192 X (m):	137.5 261,033.3 261,034.9 224.0 265.0 303.5 342.0 368.0 397.5 261,508.0 194.0 259,422.2	Y (m): Y (m): 1.5 1 1.5 2 17 11.5 Y (m): 2 Y (m):	2,903,490.2 2,903,488.2 0.6 0.4 0.6 0.8 6.8 4.6 2,903,365.9 1.1 2,901,361.5	Z (m): Z (m): 0.39 0.21 0.96 0.38 0.25 0.16 Z (m): 1.85 Z (m):	1391.9 1392.0 1.4 20.2 2.9 5.2 9.1 10.6 1373.5 66.6 1909.7	Dip (deg): Dip (deg): 0.09 0.82 0.02 0.11 0.12 0.09 Dip (deg): 0.47 Dip (deg):	60 65 0.34 0.92 0.07 0.32 0.71 0.74 55 1.99	Az. (deg): Az. (deg): 0.00 0.04 0.00 0.02 0.05 0.05 Az. (deg): 0.14 Az. (deg):	320 320 0.63 1.35 1.05 0.69 0.87 0.82 320 4.23	Area:	Los Ingleses - La Estrella	Company:	GOLDCORP
Hole ID: Hole ID: Hole ID:	CRD11-17 CRD11-17B	136 X (m): X (m): 222.5 264 302 340 351 386 X (m): 192 X (m): 142.5	137.5 261,033.3 261,034.9 224.0 265.0 303.5 342.0 368.0 397.5 261,508.0 194.0 259,422.2 144.0	Y (m): Y (m): 1.5 1 1.5 2 17 11.5 Y (m): 2 Y (m): 1.5	2,903,490.2 2,903,488.2 0.6 0.4 0.6 0.8 6.8 4.6 2,903,365.9 1.1 2,901,361.5	Z (m): Z (m): 0.39 0.21 0.96 0.38 0.25 0.16 Z (m): 1.85 Z (m): 0.91	1391.9 1392.0 1.4 20.2 2.9 5.2 9.1 10.6 1373.5 66.6 1909.7	Dip (deg): Dip (deg): 0.09 0.82 0.02 0.11 0.12 0.09 Dip (deg): 0.47 Dip (deg): 0.00	60 65 0.34 0.92 0.07 0.32 0.71 0.74 55 1.99 55 0.02	Az. (deg): Az. (deg): 0.00 0.04 0.00 0.02 0.05 0.05 Az. (deg): 0.14 Az. (deg):	320 320 0.63 1.35 1.05 0.69 0.87 0.82 320 4.23 35 0.93	Area:	Los Ingleses - La Estrella Hilo de Oro	Company:	GOLDCORP
Hole ID: Hole ID: Hole ID:	CRD11-17 CRD11-17B CRD11-18 CRD11-19	136 X (m): X (m): 222.5 264 302 340 351 386 X (m): 192 X (m): 142.5 163.5	137.5 261,033.3 261,034.9 224.0 265.0 303.5 342.0 368.0 397.5 261,508.0 194.0 259,422.2 144.0 198.0	Y (m): Y (m): 1.5 1 1.5 2 17 11.5 Y (m): 2 Y (m): 1.5 34.5	2,903,490.2 2,903,488.2 0.6 0.4 0.6 0.8 6.8 4.6 2,903,365.9 1.1 2,901,361.5 1.1 2,6.2	Z (m): Z (m): 0.39 0.21 0.96 0.38 0.25 0.16 Z (m): 1.85 Z (m): 0.91	1391.9 1392.0 1.4 20.2 2.9 5.2 9.1 10.6 1373.5 66.6 1909.7 0.5 24.2	Dip (deg): Dip (deg): 0.09 0.82 0.02 0.11 0.12 0.09 Dip (deg): 0.47 Dip (deg): 0.00 0.14	60 65 0.34 0.92 0.07 0.32 0.71 0.74 55 1.99 55 0.02	Az. (deg): Az. (deg): 0.00 0.04 0.00 0.02 0.05 0.05 Az. (deg): 0.14 Az. (deg): 0.00 0.10	320 320 0.63 1.35 1.05 0.69 0.87 0.82 320 4.23 35 0.93 1.24	Area:	Los Ingleses - La Estrella Hilo de Oro	Company:	GOLDCORP
Hole ID: Hole ID: Hole ID:	CRD11-17 CRD11-17B	136 X (m): X (m): 222.5 264 302 340 351 386 X (m): 192 X (m): 142.5 163.5 169.5	137.5 261,033.3 261,034.9 224.0 265.0 303.5 342.0 368.0 397.5 261,508.0 194.0 259,422.2 144.0 198.0 177.0	Y (m): Y (m): 1.5 1 1.5 2 17 11.5 Y (m): 2 Y (m): 1.5 34.5 7.5	2,903,490.2 2,903,488.2 0.6 0.4 0.6 0.8 6.8 4.6 2,903,365.9 1.1 2,901,361.5 1.1 2,5.7	Z (m): Z (m): 0.39 0.21 0.96 0.38 0.25 0.16 Z (m): 1.85 Z (m): 0.91 0.52 0.97	1391.9 1392.0 1.4 20.2 2.9 5.2 9.1 10.6 1373.5 66.6 1909.7 0.5 24.2 75.2	Dip (deg): Dip (deg): 0.09 0.82 0.02 0.11 0.12 0.09 Dip (deg): 0.47 Dip (deg): 0.00 0.14 0.32	60 65 0.34 0.92 0.07 0.32 0.71 0.74 55 1.99 55 0.02 0.32 0.57	Az. (deg): Az. (deg): 0.00 0.04 0.00 0.05 0.05 Az. (deg): 0.14 Az. (deg): 0.00 0.10 0.26	320 320 0.63 1.35 1.05 0.69 0.87 0.82 320 4.23 35 0.93 1.24 2.85	Area: Area:	Los Ingleses - La Estrella Hilo de Oro Guadalupe Sur	Company: Company:	GOLDCORP GOLDCORP GOLDCORP
Hole ID: Hole ID: Hole ID:	CRD11-17 CRD11-17B CRD11-18 CRD11-19	136 X (m): X (m): 222.5 264 302 340 351 386 X (m): 192 X (m): 142.5 163.5	137.5 261,033.3 261,034.9 224.0 265.0 303.5 342.0 368.0 397.5 261,508.0 194.0 259,422.2 144.0 198.0	Y (m): Y (m): 1.5 1 1.5 2 17 11.5 Y (m): 2 Y (m): 1.5 34.5	2,903,490.2 2,903,488.2 0.6 0.4 0.6 0.8 6.8 4.6 2,903,365.9 1.1 2,901,361.5 1.1 2,6.2	Z (m): Z (m): 0.39 0.21 0.96 0.38 0.25 0.16 Z (m): 1.85 Z (m): 0.91	1391.9 1392.0 1.4 20.2 2.9 5.2 9.1 10.6 1373.5 66.6 1909.7 0.5 24.2	Dip (deg): Dip (deg): 0.09 0.82 0.02 0.11 0.12 0.09 Dip (deg): 0.47 Dip (deg): 0.00 0.14	60 65 0.34 0.92 0.07 0.32 0.71 0.74 55 1.99 55 0.02	Az. (deg): Az. (deg): 0.00 0.04 0.00 0.02 0.05 0.05 Az. (deg): 0.14 Az. (deg): 0.00 0.10	320 320 0.63 1.35 1.05 0.69 0.87 0.82 320 4.23 35 0.93 1.24	Area:	Los Ingleses - La Estrella Hilo de Oro	Company:	GOLDCORP

		from	to	length	true width	Au	Ag	Pb	Zn	Cu	AuEq				
		m	m	m	m	g/t	g/t	%	%	%	g/t				
Hole ID:	CRD11-21	X (m): 158	259,270.3 186.5	Y (m): 28.5	2,901,340.5 21.4	Z (m): 0.52	1927.6 32.3	Dip (deg): 0.23	55 0.45	Az. (deg): 0.13	350 1.50	Area:	Guadalupe Sur	Company:	GOLDCORP
	including	165.5	177.5	28.5 12	9.0	0.52	52.5 64.1	0.23	0.45	0.13	2.86				
		206	218.0	12	9.0	0.27	11.7	0.03	0.06	0.03	0.53				
	including	215	216.5	1.5	1.1	0.90	43.9	0.04	0.07	0.18	1.84	_		_	
Hole ID:	CRD11-22	X (m): 149	259,059.0 190.5	Y (m): 41.5	2,901,316.4 31.5	Z (m): 0.24	1988.4 6.6	Dip (deg): 0.03	55 0.08	Az. (deg): 0.01	350 0.39	Area:	Guadalupe Sur	Company:	GOLDCORP
	including	180	181.0	1	0.8	0.34	33.2	0.18	0.32	0.06	1.13				
		246.5	251.0	4.5	3.4	3.14	45.2	0.17	0.34	0.06	4.10				
Hala ID.	including CRD11-23	246.5	249.5	3 V (==).	2.3 2.903.198.2	4.55	57.9	0.17	0.31	0.08	5.71	A	Las Inglases La Fatualla	C	COLDCORD
Hole ID:	CKD11-23	X (m): 297	260,724.2 309.0	Y (m): 12	2,903,198.2 4.1	Z (m): 0.21	1497.0 2.6	Dip (deg): 0.05	70 0.21	Az. (deg): 0.05	320 0.45	Area:	Los Ingleses - La Estrella	Company:	GOLDCORP
		319.5	332.0	12.5	4.3	0.34	2.9	0.02	0.04	0.02	0.44				
Hole ID:	CRD11-24	X (m):	258,767.2	Y (m):	2,901,373.2	Z (m):	1961.2	Dip (deg):	55	Az. (deg):	10	Area:	Guadalupe Sur	Company:	GOLDCORP
Hole ID:	CRD11-25	143 X (m) :	174.5 258,676.8	31.5 Y (m):	18.6 2,901,378.3	0.36 Z (m):	20.6 1936.5	0.08 Dip (deg):	0.21 55	0.01 Az. (deg):	0.80 10	Area:	Guadalupe Sur	Company:	GOLDCORP
Hole ID:	CRD11-26	128 X (m):	134.0 258,939.7	6 Y (m) :	3.7 2,901,674.7	0.15 Z (m) :	6.2 1947.3	0.04 Dip (deg):	0.11 55	0.01 Az. (deg):	0.31 170	Area:	Guadalupe Norte	Company:	GOLDCORP
	0.1211 20	394.5	397.5	3	1.9	0.29	27.1	0.01	0.02	0.04	0.74	7.1. Cu.	Cuaulupe Horte	отприну.	001200
Hole ID:	CRD12-27	X (m):	260,089.7	Y (m):	2,901,393.2	Z (m):	1831.9	Dip (deg):	55	Az. (deg):	355	Area:	Guadalupe Este	Company:	GOLDCORP
	in aludin a	116	143.0	27	17.3 <i>7.7</i>	0.48	51.3 <i>99.3</i>	0.24	0.65	0.03	1.69				
Hole ID:	including CRD12-28	131 X (m):	143.0 259,991.8	12 Y (m):	2,901,353.9	0.89 Z (m) :	1816.1	0.32 Dip (deg):	1.03 55	0.06 Az. (deg):	3.04 355	Area:	Guadalupe Este	Company:	GOLDCORP
		155	158.0	3	1.9	0.39	31.2	0.02	0.06	0.00	0.88				
		185	206.0	21	13.0	0.41	71.8	0.15	0.57	0.03	1.82				
	including including	192.5 198.5	206.0 201.5	13.5 3	8.4 1.9	0.60 1.36	108.6 346.9	0.22 0.50	0.82 1.15	0.04 0.08	2.70 7.13				
Hole ID:	CRD12-29	X (m):	260,231.5	Y (m):	2,901,424.7	Z (m):	1848.4	Dip (deg):	60	Az. (deg):	0	Area:	Guadalupe Este	Company:	GOLDCORP
Hole ID:	CRD12-30	X (m):	259,363.5	Y (m):	2,901,349.1	Z (m):	1912.9	Dip (deg):	50	Az. (deg):	0	Area:	Guadalupe Sur	Company:	GOLDCORP
	to almatic or	157	168.5	11.5	17.3	0.29	6.8	0.05	0.16	0.01	0.51				
	including including	159 161	160.0 162.0	1 1	0.8 0.8	0.75 0.54	10.1 9.6	0.04 0.09	0.17 0.17	0.01 0.01	1.01 0.81				
	meraamig	196	203.5	7.5	5.9	0.13	3.4	0.01	0.12	0.01	0.26				
Hole ID:	CRD12-31	X (m):	259,361.3	Y (m):	2,901,313.8	Z (m):	1902.2	Dip (deg):	60	Az. (deg):	0	Area:	Guadalupe Sur	Company:	GOLDCORP
		148.5 204	163.5 259.0	15 55	9.8 35.8	0.13 0.24	5.3 15.3	0.06 0.29	0.15 0.76	0.01 0.07	0.33 1.08				
	including	242.5	247.0	4.5	2.9	0.24	84.8	2.40	4.84	0.07	5.93				
	,	275	290.0	15	10.2	0.23	8.4	0.04	0.12	0.02	0.45				
	including	287	288.0	1	0.7	0.34	11.0	0.16	0.42	0.02	0.81	_		_	
Hole ID:	CRD12-32	X (m): 166	259,361.8 170.5	Y (m): 4.5	2,901,311.1 2.3	Z (m): 0.16	1901.5 7.1	Dip (deg): 0.52	72 0.96	Az. (deg): 0.03	0 1.01	Area:	Guadalupe Sur	Company:	GOLDCORP
		191.5	203.5	12	6.1	0.15	5.8	0.12	0.29	0.03	0.48				
		313	326.5	13.5	6.9	0.64	94.6	0.51	1.19	0.10	2.95				
	including including	313 313	320.5 316.0	7.5 3.0	3.8 1.5	0.97 1.30	157.6 323.3	0.72 0.11	1.74 0.20	0.15 0.12	4.60 6.16				
	including	358	389.5	31.5	16.1	0.17	4.9	0.11	0.52	0.12	0.62				
	including	382	385.0	3	1.5	0.56	26.1	1.07	1.97	0.12	2.56				
Hala IB.	CDD42 22	397	400.0	3	1.5	0.18	6.3	0.11	0.25	0.02	0.48	•	Consideration of Cons	6	COLDCORD
Hole ID:	CRD12-33	X (m): 179.5	259,144.2 187.0	Y (m): 7.5	2,901,302.3 5.4	Z (m): 0.48	1971.4 26.3	Dip (deg): 0.01	55 0.09	Az. (deg): 0.01	0 0.91	Area:	Guadalupe Sur	Company:	GOLDCORP
		200.5	218.5	18	13.0	0.94	39.0	0.11	0.34	0.13	1.91				
	including	211	215.5	4.5	3.2	3.07	117.1	0.28	0.98	0.49	6.09				
	including	266.5 <i>268</i>	272.5 269.5	6 1.5	4.4 1.1	0.36 <i>0.60</i>	7.6 14.4	0.05 <i>0.14</i>	0.23 <i>0.52</i>	0.01 <i>0.01</i>	0.62 1.14				
	including	343	344.0	1.5	0.7	0.50	11.1	0.14	0.32	0.01	0.88				
Hole ID:	CRD12-34	X (m):	259,145.1	Y (m):	2,901,254.5	Z (m):	1952.5	Dip (deg):	60	Az. (deg):	0	Area:	Guadalupe Sur	Company:	GOLDCORP
		267.5 308	284.0	16.5	10.9 10.2	0.03 0.29	10.4	0.04	0.23 0.26	0.02	0.34 0.89				
	including	308 314	323.5 <i>315.5</i>	15.5 <i>1.5</i>	1.0	0.29	20.7 <i>62.9</i>	0.19 <i>0.31</i>	0.26	0.07 <i>0.32</i>	2.30				
		383	391.5	8.5	5.8	0.68	8.4	0.04	0.10	0.02	0.89				
	including	383	384.5	1.5	1.0	1.70	13.9	0.04	0.06	0.01	1.95	_			
Hole ID:	CRD12-35	X (m): 272	259,145.1 287.0	Y (m): 15	2,901,254.1 7.7	Z (m): 0.10	1952.5 11.4	Dip (deg): 0.17	72 0.14	Az. (deg): 0.01	0 0.41	Area:	Guadalupe Sur	Company:	GOLDCORP
		366.5	386.0	19.5	9.8	0.10	6.2	0.08	0.32	0.02	0.41				
		405.5	420.5	15	7.5	0.18	8.7	0.02	0.10	0.01	0.38				
Hole ID:	including CRD12-36	417.5 X (m):	419.0 258,865.3	1.5 Y (m):	0.8 2,901,335.6	0.40 Z (m) :	9.3 1959.1	0.03 Dip (deg):	0.64 55	0.01 Az. (deg):	0.90 0	Area:	Guadalupe Sur	Company:	GOLDCORP
Hole ID.	CND12-30	6	9.0	3	1.7	0.10	6.9	0.10	0.10	0.05	0.36	Alca.	Guadalupe 3di	Company.	GOLDCORF
		37.5	57.5	20	11.4	0.24	7.9	0.05	0.19	0.02	0.50				
	including	46	47.0	1	0.6	1.83	10.8	0.04	0.12	0.02	2.08				
		122 141	133.5 154.5	11.5 13.5	6.6 7.8	0.13 0.38	5.0 9.1	0.03 0.02	0.13 0.06	0.01 0.01	0.29 0.55				
	including	145	146.0	1	0.6	1.60	32.5	0.12	0.19	0.01	2.22				
	=	177.5	185.0	7.5	4.4	0.82	14.5	0.02	0.08	0.02	1.10				
Hole ID:	CRD12-37	192.5	216.5 258,864.5	24 V (m):	14.2	0.23	6.6 1907 5	0.02	0.04	0.01	0.37 0	Area:	Guadaluna Sur	Company	GOLDCORP
noie ID.	CND12-3/	X (m): 62	65.0	Y (m): 3	2,901,237.2 2.0	Z (m): 0.10	1907.5 7.3	Dip (deg): 0.25	50 0.35	Az. (deg): 0.01	0.49	AIEd.	Guadalupe Sur	Company:	GOLDCORP
		105.5	116.0	10.5	6.8	0.26	9.5	0.05	0.16	0.07	0.60				
		185	186.5	1.5	1.0	0.29	21.8	0.17	0.22	0.03	0.81				
		276.5 309	278.0 329.0	1.5 20	1.1 14.4	0.33 0.36	21.5 6.4	0.02 0.01	0.17 0.04	0.03 0.01	0.77 0.49				
				_0		2.00			0.	01	2.15				

		from	to	length	true width	Au	Ag	Pb	Zn	Cu	AuEq				
		m	m	m	m	g/t	g/t	%	%	%	g/t				
Hole ID:	CRD12-38	X (m): 152.5	258,864.4 155.5	Y (m): 3	2,901,235.0 1.6	Z (m): 0.23	1907.8 15.6	Dip (deg): 0.09	60 0.18	Az. (deg): 0.06	0 0.66	Area:	Guadalupe Sur	Company:	GOLDCORP
		206	210.0	4	2.1	0.23	11.8	0.03	0.18	0.00	0.35				
		229.5 404	236.0	6.5	3.4	0.27	12.8	0.01	0.03	0.01	0.48				
Hole ID:	CRD12-39	404 X (m):	405.5 259,984.6	1.5 Y (m):	1.0 2,901,256.6	1.20 Z (m):	24.9 1831.9	0.01 Dip (deg) :	0.03 60	0.01 Az. (deg):	1.58 355	Area:	Guadalupe Este	Company:	GOLDCORP
		308.5	313.0	4.5	3.0	0.20	4.9	0.41	0.72	0.00	0.81		·		
	including	346.5 <i>352.5</i>	361.5 <i>354.0</i>	15 1.5	10.8 <i>1.1</i>	0.44 1.06	38.3 <i>309.0</i>	0.08 <i>0.23</i>	0.22 0.41	0.03 <i>0.12</i>	1.17 5.88				
	meraamg	390	402.0	12	8.8	0.14	19.7	0.36	0.98	0.09	1.21				
Hala IB.	including	391.5	396.0	4.5	3.3	0.25	46.1	0.80	2.39	0.21	2.80	•	Constalions Esta	6	COLDCODD
Hole ID:	CRD12-40	X (m): 273	260,084.0 318.0	Y (m): 45	2,901,301.7 27.5	Z (m): 1.23	1833.2 49.8	Dip (deg): 0.30	60 0.69	Az. (deg): 0.02	355 2.44	Area:	Guadalupe Este	Company:	GOLDCORP
	including	274.5	277.5	3.0	1.8	1.10	131.0	0.91	1.81	0.07	4.35				
	including including	283 298.5	287.0 307.5	4.0 9.0	2.4 5.5	4.90 2.23	118.7 97.0	0.40 0.51	0.95 1.30	0.04 0.04	7.28 4.52				
Hole ID:	CRD12-41	X (m):	259,604.7	Y (m):	2,901,316.2	Z (m):	1879.9	Dip (deg):	60	Az. (deg):	0	Area:	Guadalupe Este	Company:	GOLDCORP
		59 86.5	63.0 87.5	4 1	2.9 0.7	0.22 0.22	5.6 26.8	0.01 0.29	0.04 3.74	0.09 0.14	0.45 2.91				
		119	134.0	1 15	10.8	0.22	10.1	0.29	0.77	0.14	0.86				
		170	174.5	4.5	3.3	0.09	8.1	0.13	0.46	0.02	0.53				
		206 229.5	213.0 261.5	7 32	5.2 24.3	0.08 0.46	2.5 10.1	0.04 0.15	0.25 0.33	0.00 0.03	0.27 0.87				
	including	231	238.0	7	5.3	1.05	23.0	0.46	0.66	0.08	2.02				
Hole ID:	CRD12-42	X (m):	259,602.4	Y (m):	2,901,279.9	Z (m):	1854.6	Dip (deg):	60	Az. (deg):	0 0.81	Area:	Guadalupe Este	Company:	GOLDCORP
		119.5 183.5	128.0 185.0	8.5 1.5	5.9 1.1	0.21 0.28	20.2 9.0	0.21 0.36	0.41 0.76	0.01 0.04	1.01				
		243	249.5	6.5	4.6	0.33	2.9	0.05	0.11	0.01	0.45				
	including	269 289.5	326.5 291.0	57.5 <i>1.5</i>	41.4 1.1	0.32 1.03	20.6 188.5	0.40 <i>4.95</i>	0.98 <i>8.80</i>	0.09 <i>0.38</i>	1.42 10.80				
	meraamg	370.5	374.0	3.5	2.6	0.38	47.3	0.41	1.13	0.03	1.84				
Hole ID:	CRD12-43	X (m): 112	259,602.4 116.0	Y (m): 4	2,901,279.0 2.1	Z (m): 0.34	1854.8 21.9	Dip (deg): 0.47	74 1.73	Az. (deg): 0.04	0 1.80	Area:	Guadalupe Este	Company:	GOLDCORP
		137	148.5	11.5	6.0	0.34	33.6	0.11	0.11	0.04	0.97				
		414	506.0	92	50.6	0.29	15.0	0.19	0.72	0.06	1.04				
	including including	434 456	440.5 457.5	6.5 1.5	3.4 0.8	1.32 0.56	112.8 36.1	1.00 1.05	4.80 2.96	0.22 0.22	6.17 3.37				
Hole ID:	CRD12-44	X (m):	258,866.8	Y (m):	2,901,233.6	Z (m):	1907.9	Dip (deg):	67	Az. (deg):	0	Area:	Guadalupe Este	Company:	GOLDCORP
		154.5 252.5	168.5 253.5	14 1	6.0 0.5	0.17 0.30	4.3 32.4	0.02 0.30	0.11 1.43	0.04 0.27	0.36 2.03				
		274.5	277.0	2.5	1.2	0.20	10.3	0.02	0.86	0.02	0.85				
		297	306.5	9.5	4.6	0.24	4.9	0.01	0.02	0.02	0.35				
Hole ID:	CRD12-45	561 X (m) :	564.5 259,796.7	3.5 Y (m):	2.0 2,901,203.7	0.49 Z (m) :	2.3 1834.0	0.00 Dip (deg):	0.00 49	0.00 Az. (deg):	0.53 0	Area:	Guadalupe Este	Company:	GOLDCORP
		31.5	37.5	6	4.3	0.16	6.3	0.04	0.06	0.01	0.30				
		46.5 94	47.5 98.0	1 4	0.7 2.9	0.90 0.66	7.4 7.2	0.07 0.01	0.07 0.01	0.01 0.00	1.08 0.78				
		188	194.0	6	4.5	0.57	5.7	0.20	0.95	0.08	1.35				
		207	217.5	10.5	7.9	0.61	4.6	0.01	0.21	0.01	0.81				
		289 344.5	300.0 398.5	11 54	8.4 41.0	0.53 0.43	10.0 8.1	0.06 0.14	0.13 0.46	0.02 0.03	0.79 0.88				
	including	351.5	353.0	1.5	1.1	5.17	8.6	0.11	0.29	0.03	5.52				
	including	<i>362</i> 419.5	<i>363.0</i> 432.0	<i>1</i> 12.5	<i>0.8</i> 9.5	0.26 0.17	28.8 5.2	1.15 0.02	3.28 0.14	0.10 0.04	3.00 0.38				
		443	448.5	5.5	4.2	0.19	19.5	0.07	0.25	0.23	0.97				
Hole ID:	CRD12-46	X (m): 98	259,796.7 105.0	Y (m): 7	2,901,203.3 4.1	Z (m): 0.20	1834.0 11.2	Dip (deg): 0.11	59 0.33	Az. (deg): 0.02	0 0.59	Area:	Guadalupe Este	Company:	GOLDCORP
		192.5	205.0	12.5	7.6	0.28	6.4	0.05	0.35	0.02	0.59				
		343	352.0	9	5.8	0.06	5.8	0.07	0.17	0.02	0.29				
		405 426.5	408.5 473.0	3.5 46.5	2.3 31.6	0.69 0.18	6.6 9.3	0.01 0.17	0.03 0.42	0.00 0.03	0.81 0.65				
	including	444.5	445.5	1	0.7	0.35	40.3	1.27	2.32	0.06	2.72				
	including	<i>470.5</i> 538.5	<i>472.0</i> 541.0	1.5 2.5	1.1 1.8	<i>0.57</i> 0.86	<i>30.8</i> 14.9	1.01 0.27	1.32 0.16	0.05 0.14	2.16 1.47				
Hole ID:	CRD12-47	X (m):	259,796.7	Y (m):	2,901,202.9	Z (m):	1834.0	Dip (deg):	67	Az. (deg):	0	Area:	Guadalupe Este	Company:	GOLDCORP
		32.5 64	41.5 74.5	9 10.5	4.0 4.6	0.12 0.11	5.8 7.1	0.09 0.03	0.36 0.08	0.01 0.01	0.44 0.27				
		91.5	114.0	22.5	10.4	0.43	6.5	0.05	0.08	0.01	0.63				
		205.5	209.0	3.5	1.6	0.09	7.0	0.15	0.50	0.02	0.54				
		220.5 370.5	225.0 377.5	4.5 7	2.0 3.1	0.22 0.11	10.4 10.3	0.21 0.02	0.88 0.02	0.04 0.03	0.97 0.31				
		419.5	425.0	5.5	2.4	0.29	4.2	0.01	0.07	0.04	0.45				
		584 604.5	590.5 613.0	6.5 8.5	3.0 3.9	0.13 0.25	7.1 3.3	0.17 0.02	0.51 0.08	0.01 0.02	0.58 0.37				
		622.5	634.0	11.5	5.3	0.25	3.5	0.02	0.08	0.02	0.37				
	langle all	652	690.0	38	17.9	0.27	9.1	0.07	0.21	0.01	0.55				
	including	<i>685.5</i> 705	<i>688.5</i> 707.0	<i>3</i> 2	1.4 0.9	0.81 1.02	<i>65.6</i> 4.9	0.33 0.05	0.93 0.14	0.02 0.00	2.38 1.19				
		723.5	726.5	3	1.5	0.15	5.2	0.07	0.17	0.07	0.44	_		_	
Hole ID:	CRD14-48	X (m): 346.5	258,656.3 353.7	Y (m): 7.15	2,902,059.4 2.7	Z (m): 0.58	1915.6 9.6	Dip (deg): 0.14	70 0.30	Az. (deg): 0.09	345 1.06	Area:	La Cenicera	Company:	GOLDCORP
	including	346.5	348.0	1.5	0.6	1.52	3.9	0.07	0.06	0.01	1.64				

		from	to	length	true width	Au	Ag	Pb	Zn	Cu	AuEq				
Hala IB.	CDD44 40	m v ()	m	m v ()	m	g/t	g/t	% Dis (de e):	%	%	g/t	•	El C		COLDCORD
Hole ID:	CRD14-49	X (m): 223.5	258,490.0 225.0	Y (m): 1.5	2,903,009.9 0.8	Z (m): 0.12	1907.6 11.2	Dip (deg): 0.05	60 0.08	Az. (deg): 0.04	165 0.40	Area:	El Carmen	Company:	GOLDCORP
		247.7	260.0	12.3	6.5	0.44	41.9	0.23	0.55	0.05	1.49				
	including	247.7	251.3	3.55	1.9	1.14	118.7	0.48	1.42	0.11	3.90				
Hala ID.	CRD14-50	373.6	378.9 258,674.8	5.3 V ()	2.8 2,903,082.0	0.47	13.5 1781.1	0.12 Din (don):	0.19 55	0.04	0.87	A	El Carreson	Campanii	GOLDCORP
Hole ID:	CKD14-50	X (m): 55.5	57.0	Y (m): 1.5	0.9	Z (m): 0.01	13.2	Dip (deg): 0.03	0.51	Az. (deg): 0.12	165 0.67	Area:	El Carmen	Company:	GOLDCORP
		60	61.5	1.5	0.9	0.00	3.4	0.04	0.49	0.03	0.37				
		66	69.0	3	1.7	0.02	4.4	0.06	1.10	0.03	0.74				
	including	293.7 296.1	301.5 298.5	7.8 2.4	4.9 1.5	0.52 <i>1.20</i>	39.1 <i>91.2</i>	0.54 1.38	1.25 2.86	0.02 0.03	1.97 <i>4.57</i>				
	including	304.9	307.5	2.4	1.6	0.32	92.3	0.16	0.17	0.03	1.78				
		361.5	363.0	1.5	1.0	1.15	3.1	0.01	0.03	0.00	1.22				
Hole ID:	CRD14-51	X (m):	258,835.5	Y (m):	2,903,038.1	Z (m):	1745.5	Dip (deg):	57	Az. (deg):	165	Area:	El Carmen	Company:	GOLDCORP
	including	171 172.2	184.5 <i>178.5</i>	13.5 <i>6.3</i>	7.4 3.5	0.58 <i>0.69</i>	38.1 <i>55.4</i>	0.27 <i>0.41</i>	1.37 2.32	0.12 <i>0.20</i>	2.13 <i>3.17</i>				
	meraamg	282.7	283.2	0.5	0.3	0.16	6.3	0.06	0.11	0.05	0.40				
Hole ID:	CRD14-52	X (m):	258,867.8	Y (m):	2,901,710.2	Z (m):	1990.1	Dip (deg):	60	Az. (deg):	345	Area:	La Cenicera Sur	Company:	GOLDCORP
Hole ID:	CRD15-53	X (m):	260,549.0	Y (m):	2,903,616.9	Z (m):	1264.0	Dip (deg):	50	Az. (deg):	135	Area:	Los Ingleses	Company:	GOLDCORP
	including	163 165.5	172.1 169.5	9.1 <i>4</i>	5.9 <i>2.6</i>	3.58 <i>7.84</i>	53.6 117.7	0.51 <i>1.07</i>	3.15 <i>6.73</i>	0.27 <i>0.56</i>	6.60 14.33				
		280	281.8	1.8	1.2	0.01	0.1	0.00	0.01	0.01	0.03				
		339.4	340.4	1	0.7	0.81	23.4	0.61	2.92	0.10	3.07				
		557.3 581.9	564.6 583.2	7.25 1.25	5.2 0.9	0.17 0.61	13.4 18.2	0.03 0.10	0.07 0.59	0.11 0.07	0.56 1.32				
Hole ID:	CRD15-54	X (m):	260,728.9	Y (m):	2,903,707.8	Z (m):	1229.1	Dip (deg):	50	Az. (deg):	135	Area:	Los Ingleses	Company:	GOLDCORP
		102.8	103.9	1.1	0.7	0.06	37.7	2.66	5.75	0.06	4.75		J	• •	
	to alcolton	250.5	259.5	9	6.5	0.49	1.9	0.01	0.03	0.01	0.55				
	including	250.5 310.5	252.0 312.0	1.5 1.5	1.1 1.1	1.48 0.05	4.5 3.2	0.03 0.12	0.14 0.41	0.01 0.03	1.64 0.40				
		329	336.5	7.5	5.4	0.17	8.7	0.16	0.94	0.04	0.91				
		342	346.0	4	2.9	0.48	14.0	0.29	1.87	0.03	1.83				
		390.5 412.5	391.5 413.5	1 1	0.8 0.8	0.27 0.27	38.4 14.2	2.00 0.48	6.76 3.68	0.10 0.06	5.32 2.70				
		424	427.0	3	2.3	0.12	10.6	0.46	2.24	0.08	1.75				
		466.5	471.0	4.5	3.5	0.65	10.4	0.17	1.06	0.09	1.56				
		501	504.0	3	2.3	0.82	1.7	0.05	0.16	0.01	0.95	_			
Hole ID:	CRD15-55	X (m): 253.4	260,923.3 261.0	Y (m): 7.6	2,903,816.0 2.9	Z (m): 0.77	1202.6 12.5	Dip (deg): 0.07	70 0.23	Az. (deg): 0.00	90 1.10	Area:	Los Ingleses	Company:	GOLDCORP
	including	254.8	256.3	1.45	0.6	2.32	20.7	0.09	0.27	0.00	2.79				
Hole ID:	CRD15-56	X (m):	260,299.0	Y (m):	2,903,275.7	Z (m):	1306.2	Dip (deg):	50	Az. (deg):	135	Area:	Los Ingleses	Company:	GOLDCORP
		312.5	314.0	1.5	1.1	0.44	4.1	0.07	0.14	0.01	0.60				
	including	488.5 488.5	496.5 490.8	8 2.35	6.1 <i>1.8</i>	0.55 <i>1.50</i>	14.3 <i>24.1</i>	0.08 <i>0.08</i>	0.21 <i>0.16</i>	0.03 <i>0.02</i>	0.93 1.98				
Hole ID:	CRD15-57	X (m):	259,947.1	Y (m):	2,902,926.3	Z (m):	1362.0	Dip (deg):	50	Az. (deg):	135	Area:	Los Ingleses	Company:	GOLDCORP
		148	154.5	6.5	4.6	0.46	18.3	0.07	0.10	0.01	0.81				
	including	202.5 <i>204</i>	211.5 205.5	9 1.5	6.5 1.1	0.84 <i>2.47</i>	6.7 3.0	0.00 <i>0.00</i>	0.01 <i>0.01</i>	0.00 <i>0.00</i>	0.95 2.52				
Hole ID:	CRD15-58	X (m):	259,670.5	Y (m):	2,902,727.0	Z (m):	1425.0	Dip (deg):	50	Az. (deg):	160	Area:	Los Ingleses	Company:	GOLDCORP
		153.6	162.6	9	6.3	0.27	17.7	0.05	0.11	0.03	0.64				
	inaludina	289.3	296.0	6.75	4.9	0.28	17.6	0.04	0.09	0.01	0.60				
Hole ID:	including CRD15-59	295 X (m):	296.0 259,391.1	1 Y (m):	0.7 2,903,158.6	0.45 Z (m) :	98.0 1485.6	0.02 Dip (deg):	0.05 50	0.01 Az. (deg):	1.87 160	Area:	El Carmen	Company:	GOLDCORP
		106	124.5	18.5	12.0	1.13	11.6	0.11	0.52	0.05	1.68				
	including	112.5	114.0	1.5	1.0	7.38	11.4	0.05	0.14	0.01	7.65				
Hole ID:	CRD15-60	293.1 X (m):	298.5 260,549.0	5.45 Y (m):	3.5 2,903,616.9	0.25 Z (m):	11.7 1264.0	0.03 Dip (deg):	0.14 60	0.01 Az. (deg):	0.51 135	Area:	Los Ingleses	Company:	GOLDCORP
	0.1.2.1.3 00	229.7	233.0	3.3	1.6	5.64	109.2	0.86	8.69	1.09	13.78	7	200 mg.coco	company.	002200
	including	229.7	231.6	1.85	0.9	9.98	192.0	1.48	15.25	1.92	24.27				
		422.5	425.4	2.85	1.4	1.28	193.4	0.78	1.07	1.10	6.53				ORO
Hole ID:	ACD16-61	X (m):	260,588.9	Y (m):	2,903,714.4	Z (m):	1299.1	Dip (deg):	55	Az. (deg):	135	Area:	Los Ingleses	Company:	PREMIER
		428.9	443.4	14.55	7.7	0.38	14.1	0.46	1.58	0.09	1.74		· ·		
	. , ,	478	485.0	7	3.7	0.86	10.4	0.05	0.90	0.05	1.59				
	including	482	483.0	1	0.5	2.71	37.5	0.09	4.69	0.21	6.08				ORO
Hole ID:	ACD16-62	X (m):	260,549.1	Y (m):	2,903,617.0	Z (m):	1264.2	Dip (deg):	55	Az. (deg):	135	Area:	Los Ingleses	Company:	PREMIER
		209.5	228.0	18.5	10.2	0.49	8.0	0.23	0.91	0.04	1.23				
	including	210.5	213.0	2.5	1.4	1.93	22.2	0.74	3.11	0.08	4.30				
	including	391.5 <i>394.5</i>	399.0 <i>399.0</i>	7.5 4.5	4.0 2.4	1.22 1.85	21.3 <i>32.0</i>	0.25 <i>0.35</i>	1.89 2.95	0.07 <i>0.11</i>	2.74 <i>4.17</i>				
								2.55							ORO
Hole ID:	ACD16-63	X (m):	260,442.6	Y (m):	2,903,602.7	Z (m):	1316.3	Dip (deg):	47	Az. (deg):	135	Area:	Los Ingleses	Company:	PREMIER
	including	188.5 <i>190</i>	204.4 191.3	15.9 <i>1.3</i>	10.7 <i>0.9</i>	0.34 1.24	8.5 <i>60.9</i>	0.09 <i>0.83</i>	1.10 <i>10.00</i>	0.05 <i>0.43</i>	1.16 8.38				
	including	399	400.5	1.3	1.0	0.27	19.9	1.10	1.57	0.43	1.89				
															ORO
Hole ID:	ACD17-64	X (m):	260,548.1	Y (m):	2,903,617.9	Z (m):	1264.4	Dip (deg):	2.42	Az. (deg):	135 7.10	Area:	Los Ingleses	Company:	PREMIER
		148.6	150.2	1.6	1.1	2.21	141.0	0.89	3.42	0.56	7.19				ORO
Hole ID:	ACD17-65	X (m):	260,547.1	Y (m):	2,903,618.6	Z (m):	1263.1	Dip (deg):	65	Az. (deg):	135	Area:	Los Ingleses	Company:	PREMIER

Montable Montable			from	to	length	true width	Au	Ag	Pb	Zn	Cu	AuEq				
Month Mont	Hole ID:	ACD17-66											Area:	Los Ingleses	Company:	ORO PREMIER
Months M		ACD17 67	144		1		0.75		0.27		0.34		Aron		Company	ODO DDEMIED
Mode Mode	noie ib.	ACD17-07											Aica.	LOS IIIgleses	Company.	OKO P KLIVIILK
Mathematical Math	Hole ID:	-											Δrea·	Los Ingleses	Company:	ORO PREMIER
Mode Mode	noie ib.	ACD17-08											Aica.	LOS IIIgleses	Company.	OKO P KLIVILEK
Mathematical Math	Hole ID:	ACD17-69											Area:	Los Ingleses	Company:	ORO PREMIER
Mode Mode		including				1.0		34.9				4.21				
	Hole ID:	ACD17-70											Area:	Los Ingleses	Company:	ORO PREMIER
Mathematical Math		including									0.05					
Policy Month Mon	Hole ID:	ACD17-71											Area:	Los Ingleses	Company:	ORO PREMIER
	Hole ID:	ACD17-72	X (m):	260,084.7	Y (m):	2,901,303.3	Z (m):	1831.3	Dip (deg):	55	Az. (deg):	355	Area:	Guadalupe Este	Company:	ORO PREMIER
		including														
Hole Fig. Fig. Hole Fig. Hole Fig. Hole Fig. Hole Fig. Hole																
	Hole ID:	ACD17-73											Area:	Guadalupe Este	Company:	ORO PREMIER
		including									0.04					
Hole Hole	Hole ID:	ACD17-74											Area:	Guadalupe Este	Company:	ORO PREMIER
Policy P		including														
Ministry Ministry	Holo ID:												Aron	Guadaluna Esta	Company	ODO DDEMIED
Including 1865 3107 324 325 32	noie ib.	ACD17-73											Alea.	Guadalupe Este	Company.	ORO PREIVIIER
Model Mode																
Part																
Mountain Mountain	Hole ID:	ACD17-76											Area:	Guadalupe Este	Company:	ORO PREMIER
Policy P																
Part	Hele ID:													Cuadaluna Fata	Camman	ODO DEEMIED
Hole ID Hole	noie ib:	ACD17-77											Area:	Guadalupe Este	Company:	ORO PREIVITER
Hole Hole		to alcoding														
	Hole ID:	-											Area:	Guadalupe Este	Company:	ORO PREMIER
Hole ID:		to alcoding														
Hole ID: ACDI		incluaing														
Hole ID Mathematical Mathemat	u-l- IB.												•	Consideration of Fate	6	ODO DDEMIED
Mole ID: MCD17-80	Hole ID:	ACD17-79											Area:	Guadalupe Este	Company:	ORO PREMIER
Part	u-l- IB.												•	Consideration of Fate	6	ODO DDEMIED
Hole ID: Hole ID:	noie ib:	ACD17-80											Area:	Guadalupe Este	Company:	ORO PREIVITER
Hole ID: ACD17-81 X (m): 260,038.9 Y (m): 2,901,407.7 Z (m): 1813.5 Dip (deg): 45 Az. (deg): 355 Area: Guadalupe Este Company: ORO PREMIER		to alcoding														
Hole ID: Hole ID:	Hole ID:	-											Area:	Guadalupe Este	Company:	ORO PREMIER
Hole ID:		inaludina														
Hole ID: Hole ID:	Hole ID:												Area:	Guadalupe Este	Company:	ORO PREMIER
Mole ID: ACD18-83 X (m): 260,230.3 Y (m): 2,901,417.1 Z (m): 1847.1 Dip (deg): 75 Az. (deg): 0		inaludina														
Hole ID Hole ID	Hole ID:	-											Area:	Guadalupe Este	Company:	CRISCORA
Model Decomposition Model Decomposition		including														
Hole ID: Including 293.3 310.2 16.85 13.6 0.59 42.9 9.9 0.24 0.70 0.03 3.17 Hole ID: ACD18-85 X (m): 260,465.5 Y (m): 2,901,258.7 Z (m): 1824.6 Dip (deg): 65 A.2. (deg): 355 Area: Guadalupe Este Company: CRISCORA Hole ID: Hole ID: 46.2 484.9 22.7 11.6 0.21 11.9 0.21 0.68 0.02 0.03 2.00 Hole ID: ACD18-86 X (m): 260,465.5 X (m): 2,901,258.7 Z (m): 1824.6 Dip (deg): 67 0.03 2.00 Hole ID: ACD18-86 312.3 342.9 30.6 2.08 0.48 26.1 0.11 0.21 0.68 0.02 3.03 Hole ID: I	Hole ID:												Area:	Guadalupe Este	Company:	CRISCORA
Hole ID: Hole ID:																
Hole ID: ACD18-87 X (m): 255.1 24 18.2 0.35 19.6 0.21 11.9 0.21 0.68 0.02 0.84 25.1 11.4 0.68 0.02 0.84 25.1 1.70 0.03 2.00 11.9 0.21 0.68 0.02 0.84 25.1 1.70 0.03 2.00 1.70 0.03 2.00 1.70 0.03 2.00 1.70 0.03 2.00 1.70 0.03 2.00 1.70 0.03 2.00 1.70 0.03 2.00 1.70 0.03 2.00 1.70 0.03 2.00 1.70 0.03 2.00 1.70 0.03 2.00 1.70 0.03 1.70 0.		including														
Hole ID: Including 477.3 478.5 1.2 0.6 0.20 41.0 0.75 1.70 0.03 2.00	Hole ID:	ACD18-85											Area:	Guadalupe Este	Company:	CRISCORA
Size Size		including														
Including 327.9 329.4 1.5 1.0 6.80 260.0 0.42 0.88 0.05 11.14	Hole ID:	ACD18-86											Area:	Guadalupe Este	Company:	CRISCORA
117.4 121.8 4.4 3.2 0.17 13.1 0.02 0.09 0.01 0.42 231.1 255.1 24 18.2 0.35 9.6 0.15 0.43 0.02 0.80		including														
231.1 255.1 24 18.2 0.35 9.6 0.15 0.43 0.02 0.80	Hole ID:	ACD18-87											Area:	Guadalupe Este	Company:	CRISCORA
including 242.5 244.5 2.05 1.6 0.64 22.0 0.83 2.34 0.04 2.57			231.1	255.1	24	18.2	0.35	9.6	0.15	0.43	0.02	0.80				
		including	242.5	244.5	2.05	1.6	0.64	22.0	0.83	2.34	0.04	2.57				

		from	to	length	true width	Au	Ag	Pb	Zn	Cu	AuEq				
Hole ID:	ACD18-88	m X (m) :	m 259,992.1	m Y (m) :	m 2,901,351.5	g/t Z (m) :	g/t 1815.2	% Dip (deg):	% 47	% Az. (deg):	g/t 135	Area:	Guadalupe Este	Company:	CRISCORA
Hole ID:	ACD18-89	X (m):	261,130.1	Y (m):	2,901,725.0	Z (m):	1648.0	Dip (deg):	47	Az. (deg):	330	Area:	Guadalupe Este	Company:	CRISCORA
Hele ID:	ACD10.00	69.25	71.0	1.75	1.2	0.90	38.7	0.66	1.42	0.04	2.50	A	Cuadaluna Fata	Camanan	CDICCODA
Hole ID:	ACD18-90	X (m): 89.1	261,131.7 96.4	Y (m): 7.25	2,901,722.4 5.1	Z (m): 0.41	1648.0 64.5	Dip (deg): 0.32	47 0.75	Az. (deg): 0.02	150 1.87	Area:	Guadalupe Este	Company:	CRISCORA
	including	92.2	93.5	1.25	0.9	0.70	243.0	1.14	2.72	0.09	6.11				
Hole ID:	ACD18-91	251.6 X (m):	275.3 261,131.2	23.7 Y (m):	16.8 2,901,726.3	0.37 Z (m):	18.3 1648.0	0.05 Dip (deg):	0.10 47	0.02 Az. (deg):	0.73 180	Area:	Guadalupe Este	Company:	CRISCORA
Hole ID.	ACD10-31	94.05	101.2	7.1	4.9	0.86	144.9	0.06	0.19	0.02	3.03	Aica.	Guadalupe Este	Company.	CHISCONA
	including	95.55	100.6	5.05	3.5	0.94	198.1	0.07	0.25	0.03	3.91				
		167.7 424.9	174.6 430.8	6.95 5.9	4.8 4.4	0.36 0.37	18.1 24.3	0.05 0.05	0.13 0.16	0.01 0.01	0.71 0.83				
Hole ID:	ACD18-92	X (m):	261,197.8	Y (m):	2,901,964.8	Z (m):	1622.1	Dip (deg):	47	Az. (deg):	330	Area:	Guadalupe Este	Company:	CRISCORA
Hole ID:	ACD18-93	X (m):	261,195.8	Y (m):	2,901,967.7	Z (m):	1622.3	Dip (deg):	47	Az. (deg):	150	Area:	Guadalupe Este	Company:	CRISCORA
	including	321.9 <i>322.9</i>	331.0	9.1	6.3 <i>0.7</i>	0.28 <i>0.29</i>	27.9 50.3	0.65 <i>3.29</i>	1.26 5.29	0.05 <i>0.06</i>	1.66				
	including	361.5	<i>324.0</i> 362.7	1.05 1.2	0.7	0.29	16.0	0.35	0.57	0.05	5.15 0.83				
Hole ID:	ACD18-94	X (m):	261,184.0	Y (m):	2,902,032.3	Z (m):	1642.5	Dip (deg):	47	Az. (deg):	150	Area:	Guadalupe Este	Company:	CRISCORA
Hole ID:	ACD18-95	X (m):	260,750.8	Y (m):	2,901,288.4	Z (m):	1843.1	Dip (deg):	47	Az. (deg):	0	Area:	Guadalupe Este	Company:	CRISCORA
	including	317.3 <i>322.2</i>	328.9 <i>324.9</i>	11.55 <i>2.65</i>	7.9 1.8	0.76 1.45	31.8 <i>62.7</i>	0.11 <i>0.32</i>	0.27 <i>0.66</i>	0.02 <i>0.02</i>	1.41 2.83				
	-	344.2	361.6	17.45	11.9	0.12	4.1	0.06	0.15	0.01	0.30				
	to almatica a	368.5	409.6	41.1	27.9	0.51	25.3	0.35	0.88	0.06	1.56				
	including including	371 405.1	379.5 408.4	8.5 3.25	5.8 2.2	0.76 1.72	39.8 139.0	0.51 1.93	1.09 5.13	0.03 0.30	2.14 7.59				
Hole ID:	ACD19-96	X (m):	260,750.4	Y (m):	2,901,287.6	Z (m):	1843.1	Dip (deg):	60	Az. (deg):	347	Area:	Guadalupe Este	Company:	CRISCORA
		246.5	247.1	0.6	0.3	1.46	29.6	0.25	0.53	0.02	2.29				
		403.5 435.7	417.3 443.0	13.85 7.35	7.2 3.7	0.02 0.45	0.8 8.2	0.04 0.09	0.09 0.22	0.01 0.02	0.11 0.75				
		468.2	507.6	39.45	20.1	0.32	6.5	0.13	0.84	0.03	0.96				
	including	469.7	471.2	1.5	0.8	0.24	14.4	0.73	3.03	0.04	2.39				
	including including	489.2 506.9	493.4 507.6	4.25 0.7	2.2 0.4	1.14 0.35	26.6 15.7	0.29 0.48	4.50 2.79	0.09 0.06	4.15 2.33				
	meraamg	518.2	521.6	3.4	1.7	0.03	16.1	0.16	1.42	0.04	1.13				
Hole ID:	ACD19-97	X (m):	260,735.8	Y (m):	2,901,325.8	Z (m):	1844.9	Dip (deg):	47	Az. (deg):	347	Area:	Guadalupe Este	Company:	CRISCORA
		259.3 272.5	261.1 315.8	1.85 43.3	1.2 29.4	1.65 0.43	729.1 28.3	0.45 0.21	1.06 0.51	0.07 0.02	12.71 1.21				
	including	281.6	283.4	1.8	1.2	1.51	30.6	0.06	0.22	0.01	2.10				
	including	301.6	304.7	3.05	2.1	0.90	106.6	0.48	1.51	0.08	3.49				
Hole ID:	including ACD19-98	310.9	315.8 260,560.8	4.95 Y (m):	3.4 2,901,191.5	0.35 Z (m) :	62.0 1794.4	0.10 Dip (deg):	0.26 47	0.02 Az. (deg):	1.43 0	Area:	Guadalupe Este	Company	CRISCORA
noie ib.	ACD13-36	X (m): 278	279.6	1.6	1.2	0.39	61.8	1.01	3.78	0.21	3.97	Alea.	Guadalupe Este	Company:	CNISCONA
		375.6	376.8	1.25	1.0	0.10	9.4	0.17	0.35	0.05	0.56				
		405.4 421.1	411.4 424.1	6 3	4.7 2.4	0.72 0.41	9.3 18.0	0.06 0.14	0.06 0.22	0.01 0.01	0.91				
Hole ID:	ACD19-99	421.1 X (m):	260,354.4	э Y (m):	2,901,316.8	U.41 Z (m):	1836.4	Dip (deg):	60	Az. (deg):	0.84 0	Area:	Guadalupe Este	Company:	CRISCORA
		301.7	330.2	28.5	17.4	0.43	29.4	0.17	0.54	0.02	1.22		•		
Hele ID:	including	308.3	312.5	4.2	2.6	1.70	106.6	0.33	1.34	0.10	4.18	A	Cuadaluna Fata	Camanan	CRISCORA
Hole ID:	ACD19-100	X (m): 212.3	260,354.4 243.4	Y (m): 31.1	2,901,316.8 23.6	Z (m): 0.54	1836.4 36.4	Dip (deg): 0.20	47 0.44	Az. (deg): 0.01	0 1.38	Area:	Guadalupe Este	Company:	CRISCORA
	including	230.8	236.6	5.8	4.4	0.81	101.2	0.50	1.22	0.04	3.12				
Hole ID:	ACD19-101	X (m): 242.6	260,545.7 257.0	Y (m): 14.4	2,901,307.9	Z (m): 0.69	1827.6 147.3	Dip (deg): 0.47	47 1.62	Az. (deg): 0.04	0 3.85	Area:	Guadalupe	Company:	CRISCORA
	including	242.6 251.8	257.0 257.0	5.25	10.9 <i>4.0</i>	1.25	334.6	0.47	2.68	0.04	3.63 7.72				
Hole ID:	ACD19-102	X (m):	261,041.1	Y (m):	2,901,554.4	Z (m):	1628.9	Dip (deg):	47	Az. (deg):	330	Area:	Guadalupe	Company:	CRISCORA
		76	96.8	20.8	14.4	0.24	7.4	0.03	0.08	0.03	0.45				
		108.6 213.7	110.9 219.1	2.3 5.35	1.6 4.0	0.50 0.66	29.4 36.6	0.08 0.37	0.18 1.16	0.01 0.10	1.06 2.09				
	including	213.7	215.7	1.95	1.4	1.23	64.1	0.70	2.31	0.19	3.91				
Hole ID:	ACD19-103	X (m):	261,474.9	Y (m):	2,902,101.0	Z (m):	1521.7	Dip (deg):	47	Az. (deg):	330	Area:	Mexico Libre	Company:	CRISCORA
		40.15 110.7	42.7 118.2	2.55 7.5	1.7 5.0	0.29 6.77	12.7 97.4	0.21 0.98	0.18 2.85	0.03 0.19	0.69 10.31				
	including	110.7	115.6	4.95	3.3	10.04	141.9	1.39	4.07	0.27	15.13				
Hole ID:	ACD19-104	X (m):	261,533.1	Y (m):	2,902,150.5	Z (m):	1504.1	Dip (deg):	47	Az. (deg):	330	Area:	Mexico Libre	Company:	CRISCORA
	including	76.65 <i>78.55</i>	99.8 <i>82.4</i>	23.1 <i>3.8</i>	15.5 <i>2.5</i>	0.98 <i>5.11</i>	8.4 <i>21.3</i>	0.17 <i>0.38</i>	0.57 <i>0.88</i>	0.05 <i>0.15</i>	1.54 <i>6.24</i>				
Hole ID:	ACD19-105	X (m):	259,947.2	Y (m):	2,902,924.4	Z (m):	1362.3	Dip (deg):	47	Az. (deg):	170	Area:	Los Ingleses	Company:	CRISCORA
Hala IB.	ACD40 40C	142.4	143.4	1	0.7	0.45	2.1	0.01	0.03	0.00	0.50	•	Lastadass	6	CRISCORA
Hole ID:	ACD19-106	X (m): 218.4	260,191.0 222.5	Y (m): 4.05	2,903,094.6 2.7	Z (m): 1.57	1329.1 8.3	Dip (deg): 0.07	47 0.26	Az. (deg): 0.07	140 1.96	Area:	Los Ingleses	Company:	CRISCORA
	including	218.4	219.1	0.7	0.5	6.82	41.4	0.27	0.99	0.41	8.66				
Hole ID:	ACD19-107	X (m):	259,391.3	Y (m):	2,903,168.0	Z (m):	1484.9	Dip (deg):	47	Az. (deg):	110	Area:	El Carmen - La Cenicera	Company:	CRISCORA
Hole ID:	ACD19-108	195.1 X (m):	196.3 258,580.5	1.15 Y (m):	0.8 2,901,397.5	0.97 Z (m):	20.9 1938.1	0.31 Dip (deg):	0.49 70	0.01 Az. (deg):	1.66 20	Area:	Guadalupe	Company:	CRISCORA
		292.7	323.3	30.55	10.7	0.56	20.2	0.41	0.76	0.03	1.44			keest,	
Hele to	including	292.7	303.2	10.5	3.7	0.90	31.6	0.57	1.33	0.05	2.35	A	FI Commercial Land	Carrie	CDICCO.
Hole ID:	ACD19-109	X (m): 137.9	259,391.9 143.4	Y (m): 5.5	2,903,160.1 4.0	Z (m): 1.09	1489.2 22.3	Dip (deg): 0.10	47 0.56	Az. (deg): 0.03	200 1.78	Area:	El Carmen - La Cenicera	Company:	CRISCORA
	including	138.9	141.4	2.5	1.8	1.83	39.0	0.15	1.03	0.05	3.05				
Hole ID:	ACD19-110	X (m):	258,521.2	Y (m):	2,901,366.5	Z (m):	1963.3	Dip (deg):	47	Az. (deg):	330	Area:	Guadalupe	Company:	CRISCORA
	including	260.8 262.2	264.9 263.6	4.05 <i>1.4</i>	2.8 1.0	0.65 <i>0.77</i>	38.5 <i>77.7</i>	1.09 2.98	1.76 4.72	0.30 <i>0.61</i>	3.00 <i>6.43</i>				
Hole ID:	ACD19-111	X (m):	259,480.9	Y (m):	2,903,288.4	Z (m):	1570.0	Dip (deg):	47	Az. (deg):	120	Area:	El Carmen - La Cenicera	Company:	CRISCORA
	to at the	313.1	316.3	3.25	2.2	1.76	9.8	0.24	0.54	0.01	2.29				
	including	314.7	316.3	1.6	1.1	3.47	17.0	0.37	0.90	0.02	4.35				

		from	to	length	true width	Au	Ag	Pb	Zn	Cu	AuEq				
Hele ID:	ACD10 113	m v ().	m 359 533 6	m V (m)	m 2 001 266 2	g/t	g/t	% Din (dos):	%	% A= (dea):	g/t	A	Cuadaluna	Campanii	CDICCODA
Hole ID:	ACD19-112	X (m): 196.8	258,522.6 202.2	Y (m): 5.45	2,901,366.2 3.8	Z (m): 1.66	1963.3 6.5	Dip (deg): 0.03	47 0.07	Az. (deg): 0.02	10 1.82	Area:	Guadalupe	Company:	CRISCORA
	including	196.8	198.6	1.8	1.3	4.37	3.1	0.02	0.06	0.01	4.47				
Hole ID:	ACD19-113	X (m):	259,089.0	Y (m):	2,903,079.3	Z (m):	1610.0	Dip (deg):	47	Az. (deg):	160	Area:	El Carmen - La Cenicera	Company:	CRISCORA
	including	152 <i>152</i>	159.4 <i>153.9</i>	7.45 <i>1.9</i>	5.4 <i>1.4</i>	0.36 <i>0.91</i>	9.7 18.8	0.24 <i>0.58</i>	0.49 1.19	0.02 <i>0.02</i>	0.87 2.05				
		221.1	229.3	8.2	6.1	0.40	8.2	0.03	0.14	0.01	0.62				
	including	221.1	221.7	0.65	0.5	1.84	30.5	0.06	0.71	0.01	2.69	_		_	
Hole ID: Hole ID:	ACD19-114 ACD19-115	X (m): X (m):	258,651.3 259,089.7	Y (m): Y (m):	2,900,320.5 2,903,079.4	Z (m): Z (m):	1892.2 1609.9	Dip (deg): Dip (deg):	47 47	Az. (deg): Az. (deg):	205 130	Area: Area:	La Plomosa El Carmen - La Cenicera	Company: Company:	CRISCORA CRISCORA
	710213 113	157.5	161.1	3.6	2.5	0.57	9.1	0.07	0.22	0.01	0.85	7.1.041	20 00	company.	
Hole ID:	ACD19-116	X (m):	258,652.6	Y (m):	2,900,323.6	Z (m):	1892.5	Dip (deg):	47	Az. (deg):	25	Area:	La Plomosa	Company:	CRISCORA
Hole ID:	ACD19-117	357.2 X (m):	407.6 259,089.7	50.45 Y (m):	35.3 2,903,079.4	0.12 Z (m):	6.9 1610.0	0.12 Dip (deg):	0.14 47	0.01 Az. (deg):	0.34 200	Area:	El Carmen - La Cenicera	Company:	CRISCORA
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	166.9	174.6	7.75	5.7	0.29	10.1	0.16	0.32	0.02	0.69	7.1.041	20 00	company.	
	including	172	173.1	1.15	0.8	0.97	22.3	0.58	0.85	0.02	1.98				
	including	201.3 203.4	209.9 205.1	8.55 <i>1.75</i>	6.3 1.3	0.60 1.79	11.9 <i>16.9</i>	0.21 <i>0.14</i>	0.68 <i>0.46</i>	0.01 <i>0.00</i>	1.23 2.33				
Hole ID:	ACD19-118	X (m):	259,265.2	Y (m):	2,901,332.4	Z (m):	1927.5	Dip (deg):	78	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		296.3	311.4	15.05	6.5	0.68	44.2	0.87	1.68	0.22	2.86				
	including	<i>307.4</i> 329.5	<i>311.4</i> 339.6	<i>3.95</i> 10.05	1.7 4.3	1.17 0.18	<i>78.7</i> 6.8	1.57 0.06	3.38 0.12	0.19 0.02	<i>4.95</i> 0.39				
Hole ID:	ACD19-119	X (m):	261,533.5	Y (m):	2,902,150.1	Z (m):	1504.1	Dip (deg):	47	Az. (deg):	0	Area:	Mexico Libre	Company:	CRISCORA
		89.45	101.3	11.8	8.3	0.30	11.3	0.16	0.27	0.07	0.77				
Hole ID:	including ACD19-120	89.45 X (m):	92.7 261,358.2	3.2 Y (m):	2.2 2,902,065.9	0.66 Z (m) :	24.7 1567.4	0.35 Dip (deg):	0.38 45	0.20 Az. (deg):	1.65 330	Area:	Mexico Libre	Company:	CRISCORA
noic ib.	ACD13 120	33.1	44.3	11.2	7.7	0.16	7.1	0.12	0.27	0.02	0.48	Aicu.	WICKICO LIDIC	company.	CHISCOHA
	including	33.1	35.2	2.05	1.4	0.60	25.2	0.39	0.92	0.07	1.69				
Hole ID:	ACD19-121	77.6 X (m):	78.6 261,358.4	1 Y (m):	0.7 2,902,065.7	0.97 Z (m):	138.0 1567.4	1.71 Dip (deg):	0.25 65	0.16 Az. (deg):	3.92 330	Area:	Mexico Libre	Company:	CRISCORA
noic ib.	ACDIS ILI	58.85	74.2	15.3	6.4	3.21	18.2	0.26	0.57	0.02	3.90	Aicu.	WICKICO LIDIC	company.	CHISCOHA
	including	58.85	62.1	3.25	1.4	14.70	55.5	0.83	1.91	0.06	16.91				
Hole ID:	ACD19-122	128 X (m) :	141.0 259,702.9	13 Y (m):	5.6 2,901,205.5	0.11 Z (m) :	10.1 1861.9	0.17 Dip (deg):	0.26 50	0.02 Az. (deg):	0.48 0	Area:	Guadalupe	Company:	CRISCORA
noic ib.	ACDIS ILL	25.05	32.5	7.45	5.2	0.03	9.8	0.06	0.14	0.02	0.29	Aicu.	Guadalape	company.	CHISCONA
		61.4	65.1	3.7	2.6	0.13	8.1	0.02	0.10	0.07	0.41				
		93.5 128.4	99.7 136.2	6.2 7.8	4.4 5.5	0.16 0.27	7.3 10.9	0.09 0.14	0.20 0.25	0.01 0.00	0.41 0.62				
		161.2	178.0	16.8	11.9	0.33	2.0	0.03	0.10	0.00	0.43				
		226.5	237.0	10.45	7.4	0.11	3.5	0.15	0.28	0.01	0.38				
		266.9 336.8	272.2 377.4	5.35 40.6	3.8 28.8	0.34 0.87	10.6 16.3	0.09 0.12	0.33 0.39	0.08 0.07	0.82 1.47				
	including	341.5	348.0	6.45	4.6	1.10	27.8	0.23	0.77	0.09	2.11				
	including	353.3	364.8	11.5	8.2	1.15	24.2	0.17	0.48	0.14	2.02				
Hole ID:	ACD19-123	X (m): 33.75	261,357.6 56.0	Y (m): 22.2	2,902,065.3 14.0	Z (m): 0.53	1567.4 38.3	Dip (deg): 0.54	50 0.96	Az. (deg): 0.06	280 1.87	Area:	Mexico Libre	Company:	CRISCORA
	including	44.35	49.6	5.2	3.3	1.43	114.0	1.54	2.75	0.16	5.32				
Hole ID:	ACD19-124	X (m):	260,018.7	Y (m):	2,901,576.9	Z (m):	1761.7	Dip (deg):	47	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
Hole ID:	ACD19-125	X (m): 100.1	261,181.6 101.9	Y (m): 1.8	2,902,035.1 1.2	Z (m): 0.25	1642.6 8.5	Dip (deg): 0.04	47 0.10	Az. (deg): 0.00	105 0.44	Area:	Mexico Libre	Company:	CRISCORA
		137.8	143.0	5.25	3.6	0.42	16.8	0.41	0.52	0.01	1.11				
	including	140.8	141.8	1	0.7	0.53	39.0	1.22	1.42	0.03	2.34				
Hole ID:	ACD19-126	168.3 X (m):	172.2 261,183.3	3.9 Y (m):	2.7 2,902,031.4	0.29 Z (m):	8.3 1642.6	0.01 Dip (deg):	0.02 47	0.01 Az. (deg):	0.43 180	Area:	Mexico Libre	Company:	CRISCORA
	710213 120	96.6	97.6	1	0.7	0.70	10.3	0.44	0.26	0.01	1.17	7.1.041	mexico ziore	company.	
Hole ID:	ACD19-127	X (m):	261,490.5	Y (m):	2,901,978.6	Z (m):	1447.9	Dip (deg):	47	Az. (deg):	150	Area:	Mexico Libre	Company:	CRISCORA
		120.3 181.4	122.3 182.5	2 1.1	1.4 0.8	0.29 0.07	20.8 14.9	0.26 0.44	0.51 0.80	0.01 0.02	0.95 0.91				
		274	275.0	1	0.7	0.20	71.6	3.95	3.18	0.09	4.54				
Hole ID:	ACD19-128	X (m):	261,610.0	Y (m):	2,902,040.4	Z (m):	1445.6	Dip (deg):	47	Az. (deg):	150	Area:	Mexico Libre	Company:	CRISCORA
		69.45 137.1	72.2 169.7	2.75 32.6	1.9 22.8	0.56 0.87	42.7 15.2	0.22 0.08	0.23 0.17	0.06 0.01	1.47 1.22				
	including	142.8	144.3	1.5	1.1	1.61	214.0	0.19	0.26	0.10	4.97				
	including	168.7	169.7	1	0.7	22.80	9.7	0.15	0.58	0.02	23.32				
Hole ID:	ACD19-129	333.2 X (m):	334.2 261,724.6	1 Y (m):	0.7 2,902,204.0	0.35 Z (m):	0.8 1446.4	0.00 Dip (deg):	0.01 47	0.00 Az. (deg):	0.37 150	Area:	Mexico Libre	Company:	CRISCORA
		99.9	114.9	14.95	10.8	0.50	21.5	0.41	0.83	0.02	1.43				
	including	<i>104.6</i> 350.5	<i>106.1</i> 362.1	1.45	1.0 8.8	1.24	<i>51.7</i> 15.8	1.50 0.13	2.58 0.33	0.03 0.01	<i>3.96</i> 0.78				
	including	355.5	356.6	11.6 1.15	0.9	0.32 2.21	53.3	0.13	0.03	0.01	2.98				
Hole ID:	ACD19-130	X (m):	261,722.6	Y (m):	2,902,207.2	Z (m):	1446.3	Dip (deg):	47	Az. (deg):	330	Area:	Mexico Libre	Company:	CRISCORA
	includi~~	133.3	139.3	6.05	4.1	0.65	10.0	0.28	0.91	0.06	1.47				
Hole ID:	including ACD19-131	133.3 X (m):	134.7 261,823.1	1.4 Y (m):	1.0 2,902,251.2	2.29 Z (m) :	13.2 1407.1	0.46 Dip (deg):	1.12 47	0.08 Az. (deg):	3.37 330	Area:	Mexico Libre	Company:	CRISCORA
-		157.6	166.8	9.2	6.5	0.73	14.5	0.18	0.73	0.06	1.47				
Hale ID:	including	158.8	159.9	1.05	0.7	2.27	23.2	0.10	0.40	0.14	3.07	A	Mayle - Lib	Cam	CDICCODA
Hole ID:	ACD19-132	X (m): 66.25	261,825.0 68.3	Y (m): 2	2,902,248.1 1.4	Z (m): 0.10	1407.0 4.7	Dip (deg): 0.31	47 0.77	Az. (deg): 0.02	150 0.72	Area:	Mexico Libre	Company:	CRISCORA
Hole ID:	ACD19-133	X (m):	262,110.3	Y (m):	2,902,354.9	Z (m):	1391.3	Dip (deg):	47	Az. (deg):	330	Area:	Mexico Libre	Company:	CRISCORA
	including	86.7 01.45	110.5	23.75	17.1 5.4	0.41	46.2	0.13	0.16	0.02	1.23				
Hole ID:	including ACD19-134	91.45 X (m):	99.0 262,111.2	7.5 Y (m):	5.4 2,902,355.4	0.80 Z (m) :	98.9 1391.2	0.31 Dip (deg):	0.01 47	0.01 Az. (deg):	2.33 10	Area:	Mexico Libre	Company:	CRISCORA
		230	260.2	30.2	22.0	0.27	9.3	0.05	0.23	0.01	0.56				
	including	231.8	232.8	1	0.7	2.44	23.2	0.03	0.04	0.01	2.82				
		280.6	281.7	1.05	0.8	1.16	2.2	0.02	0.04	0.00	1.22				

		from	to	length	true width	Au	Ag	Pb	Zn	Cu	AuEq				
Hole ID:	ACD19-135	m X (m) :	m 261,608.4	m Y (m) :	m 2,902,043.2	g/t Z (m) :	g/t 1445.6	% Dip (deg):	% 47	% Az. (deg):	g/t 330	Area:	Mexico Libre	Company:	CRISCORA
	7.02.13 100	189.6	190.9	1.3	0.9	0.60	6.1	0.03	0.06	0.00	0.73	7.1.00.	Wickles Elsi'c	company.	0.1.0001.01
		243	248.3	5.3	3.9	0.06	6.2	0.19	0.40	0.02	0.45				
	including	273.4 284.7	289.5 286.3	16.05 <i>1.6</i>	11.9 <i>1.2</i>	0.20 <i>0.38</i>	10.2 22.9	0.16 <i>0.46</i>	0.89 5.19	0.05 <i>0.15</i>	0.95 <i>3.86</i>				
Hole ID:	ACD19-136	X (m):	261,489.0	Y (m):	2,901,980.4	Z (m):	1450.0	Dip (deg):	47	Az. (deg):	330	Area:	Mexico Libre	Company:	CRISCORA
		20.15 228.7	22.5 261.6	2.35 32.9	1.6 24.7	0.26 0.16	9.9 7.1	0.11 0.10	0.33 0.25	0.01 0.03	0.63 0.47				
	including	257.3	258.3	1	0.8	0.82	20.3	0.03	0.22	0.10	1.38				
Hole ID:	ACD19-137	X (m):	261,539.7	Y (m):	2,902,013.3 1.6	Z (m):	1454.1	Dip (deg):	58	Az. (deg):	330	Area:	Mexico Libre	Company:	CRISCORA
		292.1 306.8	295.2 317.4	3.1 10.6	5.6	0.16 0.28	11.4 12.8	0.24 0.23	0.64 0.73	0.02 0.04	0.78 0.99				
		339.6	382.4	42.75	22.7	0.17	4.8	0.18	0.40	0.01	0.54				
Hole ID:	including ACD19-138	381.3 X (m):	382.4 261,683.8	1.1 Y (m):	0.6 2,902,180.4	3.75 Z (m):	16.9 1457.3	0.41 Dip (deg):	1.13 47	0.07 Az. (deg):	4.85 160	Area:	Mexico Libre	Company:	CRISCORA
		91.25	97.4	6.1	4.2	0.20	8.1	0.26	0.54	0.01	0.71			,-	
	including	<i>96.2</i> 340.8	<i>97.4</i> 342.3	1.15 1.5	0.8 1.1	0.33 0.35	14.4 30.7	0.62 0.11	1.30 0.28	0.01 0.02	1.48 1.00				
	including	340.8	342.3	1.5	1.1	0.35	30.7	0.11	0.28	0.02	1.00				
Hole ID:	ACD20-139	X (m):	261,414.9	Y (m):	2,902,043.2	Z (m):	1521.3	Dip (deg):	45	Az. (deg):	305	Area:	Mexico Libre	Company:	CRISCORA
		80.8 113.2	83.7 128.6	2.85 15.4	2.0 11.2	0.03 0.41	13.2 13.3	0.01 0.41	0.03 0.72	0.01 0.05	0.26 1.21				
	including	126.5	128.6	2.1	1.5	2.60	51.1	2.09	3.63	0.33	6.53				
Hole ID:	ACD20-140	156.6 X (m):	157.9 261,424.3	1.3 Y (m):	0.9 2,902,086.2	0.42 Z (m):	57.3 1520.8	0.31 Dip (deg):	0.75 70	0.17 Az. (deg):	2.00 330	Area:	Mexico Libre	Company:	CRISCORA
noie ib.	ACD20-140	98.55	99.6	1	0.4	0.28	7.2	0.09	0.13	0.00	0.49	Aica.	WIEXICO LIBITE	company.	CHISCONA
		145.8	168.4	22.56	8.1	0.19	13.7	0.18	0.45	0.03	0.73				
Hole ID:	including ACD20-141	158.2 X (m):	159.2 261,522.1	1 Y (m):	0.4 2,902,105.9	2.43 Z (m) :	115.0 1512.2	1.27 Dip (deg):	3.59 52	0.06 Az. (deg):	6.52 330	Area:	Mexico Libre	Company:	CRISCORA
		140.4	142.6	2.2	1.4	0.18	22.2	0.18	0.61	0.10	1.05				
Hole ID:	ACD20-142	X (m): 162.7	261,504.1 169.1	Y (m): 6.38	2,902,054.4 4.5	Z (m): 0.42	1483.3 28.8	Dip (deg): 0.22	45 0.49	Az. (deg): 0.13	330 1.37	Area:	Mexico Libre	Company:	CRISCORA
	including	164	164.8	0.38	0.5	1.07	54.7	0.23	0.33	0.13	2.12				
Hole ID:	ACD20-143	X (m):	258,209.5	Y (m):	2,902,843.3	Z (m):	2014.8	Dip (deg):	47	Az. (deg):	150	Area:	El Carmen - La Cenicera	Company:	CRISCORA
	including	114.1 115.6	120.9 <i>117.2</i>	6.8 1.55	4.6 1.1	0.22 <i>0.38</i>	37.8 <i>62.1</i>	0.38 <i>0.66</i>	0.60 1.32	0.03 <i>0.04</i>	1.26 2.26				
Hole ID:	ACD20-144	X (m):	261,561.2	Y (m):	2,902,066.6	Z (m):	1467.8	Dip (deg):	47	Az. (deg):	330	Area:	Mexico Libre	Company:	CRISCORA
	including	173.2 181.7	187.0 <i>183.4</i>	13.71 <i>1.69</i>	9.9 1.2	0.63 2.15	11.8 <i>42.0</i>	0.17 <i>0.55</i>	0.46 1.88	0.05 <i>0.36</i>	1.17 4.49				
	including	211.4	213.1	1.7	1.2	0.16	7.9	0.44	0.51	0.01	0.72				
Hole ID:	ACD20-145	X (m):	258,457.3	Y (m):	2,901,664.0	Z (m):	1981.7	Dip (deg):	47	Az. (deg):	190	Area:	W. Guadalupe	Company:	CRISCORA
Hole ID:	ACD20-146	224.7 X (m):	226.1 258,208.6	1.4 Y (m):	1.0 2,902,842.7	0.17 Z (m):	29.0 2014.8	0.11 Dip (deg):	0.11 47	0.16 Az. (deg):	0.92 150	Area:	El Carmen - La Cenicera	Company:	CRISCORA
		102.2	102.7	0.5	0.3	0.58	245.0	0.37	0.54	0.08	4.55				
Hole ID:	ACD20-147	X (m): 118.6	258,111.4 120.9	Y (m): 2.3	2,902,857.6 1.6	Z (m): 0.69	1987.1 86.3	Dip (deg): 0.42	47 0.52	Az. (deg): 0.05	180 2.40	Area:	Camp	Company:	CRISCORA
	including	118.6	119.9	1.3	0.9	0.70	149.0	0.74	0.90	0.08	3.67				
u-l- IB.	10020 110	199.1	200.5	1.4	1.0	0.35	17.4	0.04	0.25	0.01	0.76	•	W. Considebone	6	CDICCODA
Hole ID:	ACD20-148	X (m): 339.1	258,457.4 381.4	Y (m): 42.3	2,901,664.5 19.5	Z (m): 0.43	1981.7 21.2	Dip (deg): 0.19	65 0.37	Az. (deg): 0.09	190 1.13	Area:	W. Guadalupe	Company:	CRISCORA
	including	351.1	355.1	4.05	1.9	0.86	76.1	1.40	2.63	0.17	4.12				
Hole ID:	ACD20-149	X (m): 2.5	261,042.7 7.5	Y (m): 5	2,901,550.4 3.4	Z (m): 0.26	1631.3 4.8	Dip (deg): 0.02	47 0.09	Az. (deg): 0.02	180 0.41	Area:	E. Guadalupe	Company:	CRISCORA
		182.6	184.0	1.4	1.0	0.17	10.9	0.03	0.06	0.01	0.39				
Hole ID:	ACD20-150	X (m):	258,250.0	Y (m):	2,902,478.3 0.7	Z (m):	2009.6	Dip (deg):	47	Az. (deg):	180	Area:	Camp	Company:	CRISCORA
Hole ID:	ACD20-151	90.95 X (m):	92.0 258,457.9	1 Y (m):	2,901,667.5	0.25 Z (m):	5.2 1981.8	0.08 Dip (deg):	0.64 47	0.02 Az. (deg):	0.72 10	Area:	W. Guadalupe	Company:	CRISCORA
		46.5	47.5	1	0.7	0.59	6.2	0.01	0.03	0.02	0.73	_		_	
Hole ID:	ACD20-152	X (m): 249.2	258,456.5 252.8	Y (m): 3.6	2,901,664.5 2.2	Z (m): 0.44	1981.6 3.3	Dip (deg): 0.06	55 0.15	Az. (deg): 0.01	220 0.60	Area:	W. Guadalupe	Company:	CRISCORA
Hole ID:	ACD20-153	X (m):	258,195.6	Y (m):	2,902,460.2	Z (m):	2004.5	Dip (deg):	47	Az. (deg):	180	Area:	Camp	Company:	CRISCORA
Hole ID:	ACD20-154	92.8 X (m):	96.0 261,042.1	3.2 Y (m):	2.2 2,901,556.5	0.73 Z (m):	12.9 1631.3	0.13 Dip (deg):	0.33 47	0.02 Az. (deg):	1.17 0	Area:	E. Guadalupe	Company:	CRISCORA
noie ib.	ACD20-134	64.5	67.0	2.5	1.8	0.62	24.4	0.10	0.18	0.02	1.13	Aica.	L. Guadalupe	company.	CHISCONA
	to alcosto a	101.1	168.1	67	50.9	0.10	6.0	0.03	0.07	0.01	0.24				
	including	102.1 255.1	106.5 269.3	<i>4.4</i> 14.2	<i>3.2</i> 11.5	1.31 0.27	<i>84.8</i> 12.3	<i>0.46</i> 0.34	<i>0.93</i> 0.83	0.07 0.02	3.27 1.05				
_	including	268.3	269.3	1	0.8	1.54	86.4	2.86	7.21	0.18	7.95				
Hole ID:	ACD20-155	X (m): 81.15	258,065.8 93.3	Y (m): 12.15	2,902,441.6 8.4	Z (m): 0.18	1953.3 16.7	Dip (deg): 0.15	47 0.41	Az. (deg): 0.03	180 0.74	Area:	Camp	Company:	CRISCORA
Hole ID:	ACD20-156	X (m):	258,362.7	Y (m):	2,902,519.9	Z (m):	2019.4	Dip (deg):	47	Az. (deg):	140	Area:	Camp	Company:	CRISCORA
u-l- IB.	4 CD 20 4 E 7	81	85.9	4.9	3.4	0.39	17.3	0.11	0.40	0.07	0.99	•		6	CDICCODA
Hole ID:	ACD20-157	X (m): 162.7	258,306.9 184.5	Y (m): 21.75	2,902,268.0 15.7	Z (m): 0.31	1993.6 3.6	Dip (deg): 0.03	47 0.09	Az. (deg): 0.01	180 0.43	Area:	Camp	Company:	CRISCORA
Hole ID:	ACD20-158	X (m):	257,935.2	Y (m):	2,901,416.0	Z (m):	2055.6	Dip (deg):	60	Az. (deg):	0	Area:	W. Guadalupe	Company:	CRISCORA
Hole ID:	ACD20-159	X (m): 197.4	261,181.1 210.8	Y (m): 13.4	2,902,034.9 5.6	Z (m): 0.12	1642.4 9.0	Dip (deg): 0.29	65 0.68	Az. (deg): 0.01	105 0.73	Area:	Mexico Libre	Company:	CRISCORA
	including	203.4	204.9	1.5	0.6	0.29	32.6	1.37	3.44	0.03	3.13				
Hole ID:	ACD20-159A	X (m):	261,180.1	Y (m):	2,902,035.3	Z (m):	1642.4	Dip (deg):	65 3.74	Az. (deg):	105	Area:	Mexico Libre	Company:	CRISCORA
		140.2 224.4	141.2 233.0	1 8.65	0.4 3.5	0.78 0.42	58.2 17.6	1.93 0.23	3.74 0.46	0.11 0.04	4.48 1.05				
	including	224.4	225.9	1.5	0.6	1.19	44.0	0.24	0.37	0.03	2.13	_	_	_	
Hole ID:	ACD20-160	X (m): 219.6	258,305.8 237.1	Y (m): 17.5	2,902,269.3 12.8	Z (m): 0.58	1993.6 14.1	Dip (deg): 0.11	47 0.24	Az. (deg): 0.02	215 0.98	Area:	Camp	Company:	CRISCORA
	including	229.6	232.3	2.7	2.0	1.68	34.1	0.35	0.63	0.02	2.72				

		from	to	length	true width	Au	Ag	Pb	Zn	Cu	AuEq				
		m	m	m	m	g/t	g/t	%	%	%	g/t	_	_		
Hole ID:	ACD20-161	X (m): 39.85	258,414.9 41.1	Y (m): 1.2	2,902,251.3 0.8	Z (m): 6.97	2015.0 104.0	Dip (deg): 0.18	47 0.84	Az. (deg): 0.94	140 10.38	Area:	Camp	Company:	CRISCORA
		175.9	180.6	4.7	3.4	1.08	23.7	0.34	0.55	0.15	2.07				
	including	178.2	180.6	2.4	1.7	1.54	30.7	0.51	0.71	0.20	2.84				
Hole ID:	ACD20-162	316.3 X (m):	317.3 258,488.7	1 Y (m):	0.8 2,901,273.5	0.03 Z (m):	3.0 1957.9	0.05 Dip (deg):	0.87 55	0.00 Az. (deg):	0.56 327	Area:	Guadalupe	Company:	CRISCORA
Hole ID:	ACD20-162A	X (m):	258,489.3	Y (m):	2,901,271.0	Z (m):	1955.8	Dip (deg):	55	Az. (deg):	327	Area:	Guadalupe	Company:	CRISCORA
		458.6	476.2	17.6	12.7	0.31	14.7	0.09	0.21	0.02	0.70				
Hole ID:	ACD20-163	X (m): 269.9	259,362.9 300.1	Y (m): 30.2	2,901,314.2 19.6	Z (m): 0.56	1901.9 43.5	Dip (deg): 0.82	65 2.38	Az. (deg): 0.11	30 2.92	Area:	Guadalupe	Company:	CRISCORA
	including	272.7	280.6	7.9	5.1	0.99	119.7	2.77	8.22	0.26	8.48				
Hole ID:	ACD20-164	X (m):	260,239.0	Y (m):	2,901,330.2	Z (m):	1839.1	Dip (deg):	70	Az. (deg):	355	Area:	Guadalupe	Company:	CRISCORA
		313.1 341.4	314.2 342.5	1.1 1.15	0.5 0.5	0.16 0.81	9.7 5.7	0.64 0.01	1.25 0.06	0.01 0.01	1.21 0.95				
		364.6	374.9	10.25	4.5	0.20	17.0	0.01	0.32	0.01	0.69				
	including	367	367.8	0.8	0.4	0.65	48.3	1.63	2.51	0.01	3.30				
	ingluding	421.8	445.1	23.3 1.1	10.0 <i>0.5</i>	0.40 1.08	18.9 <i>38.2</i>	0.06 <i>0.19</i>	0.19	0.01 <i>0.01</i>	0.80				
Hole ID:	including ACD20-165	433.1 X (m):	434.2 259,204.3	Y (m):	2,901,263.2	Z (m):	1940.8	0.19 Dip (deg):	0.25 55	0.01 Az. (deg):	1.84 0	Area:	Guadalupe	Company:	CRISCORA
		268.3	291.1	22.75	18.2	0.30	18.7	0.25	0.60	0.02	1.00		•	. ,	
Hele ID:	including	274.5	276.6	2.1	1.7	0.71	145.3	2.52	5.99	0.12	7.07	A	Cuadaluna	C	CDICCODA
Hole ID:	ACD20-166	X (m): 256.2	260,617.9 286.0	Y (m): 29.75	2,901,348.4 19.9	Z (m): 0.26	1878.7 47.3	Dip (deg): 0.23	53 0.34	Az. (deg): 0.02	0 1.22	Area:	Guadalupe	Company:	CRISCORA
	including	256.2	267.6	11.35	7.5	0.47	113.7	0.42	0.32	0.04	2.45				
Hole ID:	ACD20-167	X (m):	259,522.4	Y (m):	2,901,284.1	Z (m):	1855.0	Dip (deg):	65	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
	including	280.4 280.4	299.4 284.8	19 <i>4.4</i>	13.5 <i>3.1</i>	1.13 3.02	3.8 2.7	0.09 <i>0.02</i>	0.22 <i>0.08</i>	0.01 <i>0.01</i>	1.35 <i>3.12</i>				
	including	297.2	299.4	2.2	1.6	2.07	8.9	0.68	1.39	0.02	3.23				
Hole ID:	ACD20-168	X (m):	260,494.7	Y (m):	2,901,360.7	Z (m):	1847.8	Dip (deg):	50	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
	including	176.2 176.2	199.4 <i>181.3</i>	23.2 5.1	17.2 3.7	0.34 <i>0.61</i>	69.1 118.4	0.24 <i>0.37</i>	0.12 <i>0.08</i>	0.01 <i>0.01</i>	1.48 2.47				
	including	194.7	196.2	1.5	1.1	0.67	208.0	0.23	0.10	0.03	3.76				
Hole ID:	ACD20-169	X (m):	260,492.6	Y (m):	2,901,332.5	Z (m):	1833.0	Dip (deg):	60	Az. (deg):	0	Area:	E. Guadalupe	Company:	CRISCORA
		147.8 264.2	150.3 317.0	2.5 52.85	1.5 31.2	0.50 0.18	28.0 18.1	0.17 0.09	0.33 0.24	0.01 0.01	1.15 0.62				
	including	276.7	278.3	1.6	0.9	0.38	169.0	0.18	0.46	0.02	3.09				
Hole ID:	ACD20-170	X (m):	259,703.0	Y (m):	2,901,203.4	Z (m):	1861.7	Dip (deg):	60	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		28 62.8	43.0 75.3	15 12.5	8.6 7.1	0.03 1.11	11.5 4.2	0.11 0.03	0.14 0.12	0.01 0.01	0.32 1.26				
		189.6	203.8	14.2	8.5	0.40	3.9	0.07	0.10	0.00	0.53				
		234.7	247.2	12.5	7.9	0.08	4.7	0.12	0.31	0.01	0.38				
		269.7 370.5	279.1 371.5	9.4 1	6.0 0.7	0.13 0.70	11.8 24.6	0.19 0.06	0.70 0.11	0.02 0.03	0.78 1.17				
		405.6	411.0	5.45	3.8	0.65	36.9	0.69	1.74	0.17	2.62				
	including	405.6	409.9	4.35	3.0	0.81	44.7	0.84	2.06	0.21	3.17	_			
Hole ID:	ACD20-171	X (m): 138.6	260,401.2 175.7	Y (m): 37.05	2,901,356.8 27.4	Z (m): 0.89	1848.7 27.9	Dip (deg): 0.07	50 0.17	Az. (deg): 0.02	0 1.43	Area:	E. Guadalupe	Company:	CRISCORA
	including	139.9	142.4	2.5	1.9	8.13	62.0	0.24	0.08	0.04	9.19				
	including	172.4	173.9	1.5	1.1	0.58	222.0	0.77	0.22	0.06	4.18	_			
Hole ID:	ACD20-172	X (m): 270	260,401.1 303.0	Y (m): 33	2,901,318.2 22.4	Z (m): 0.41	1836.6 51.0	Dip (deg): 0.46	57 1.06	Az. (deg): 0.02	0 1.90	Area:	Guadalupe	Company:	CRISCORA
	including	276.9	288.8	11.9	8.1	0.79	118.9	0.93	2.31	0.04	4.10				
Hole ID:	ACD20-173	X (m):	259,905.1	Y (m):	2,901,239.3	Z (m):	1837.2	Dip (deg):	55	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		235.1 310.3	241.3 405.9	6.2 95.55	4.2 68.8	0.27 0.26	13.9 8.2	0.04 0.07	0.02 0.23	0.01 0.02	0.50 0.56				
		359	360.0	1	0.7	0.51	43.1	1.59	3.45	0.15	3.78				
Hele IB.	45020.474	403.2	403.9	0.7	0.5	0.86	108.0	0.84	2.42	0.03	4.03	•	Considerations		CDICCODA
Hole ID:	ACD20-174	X (m): 209	260,301.4 221.6	Y (m): 12.6	2,901,338.9 9.2	Z (m): 0.34	1840.6 36.4	Dip (deg): 0.10	47 0.47	Az. (deg): 0.02	0 1.17	Area:	Guadalupe	Company:	CRISCORA
	including	215.2	216.7	1.5	1.1	0.51	108.0	0.22	1.29	0.06	2.88				
	to alcostin a	230.3	235.1	4.8	3.6	0.46	71.4	0.28	0.65	0.02	1.95				
Hole ID:	including ACD20-175	233.6 X (m):	235.1 259,107.7	1.5 Y (m):	1.1 2,901,384.2	0.95 Z (m) :	201.0 2002.5	0.68 Dip (deg):	1.43 47	0.05 Az. (deg):	4.86 0	Area:	E. Guadalupe	Company:	CRISCORA
		85.35	129.2	43.85	37.3	0.74	67.9	0.12	0.42	0.15	2.19		•	. ,	
	including including	87.2	94.6	7.3 3.2	6.2 2.7	0.67	228.0	0.32 0.29	0.74	0.08	4.50				
Hole ID:	ACD20-176	112.1 X (m):	115.3 260,301.4	3.2 Y (m):	2,901,338.7	1.92 Z (m) :	264.3 1840.5	Dip (deg):	2.29 60	1.52 Az. (deg):	9.27 0	Area:	Guadalupe	Company:	CRISCORA
		235.1	250.2	15.1	8.9	0.88	45.2	0.32	0.69	0.02	2.03		•	- •	
	including	239.1	242.2	3.1	1.8	2.96	134.1	0.21	0.64	0.05	5.33				
Hole ID:	ACD20-177	263.9 X (m):	266.2 258,477.4	2.3 Y (m):	1.4 2,902,308.4	0.20 Z (m):	15.3 1992.2	0.48 Dip (deg):	1.24 47	0.01 Az. (deg):	1.28 140	Area:	La Cenicera	Company:	CRISCORA
•	•	57.6	58.8	1.2	0.8	1.19	131.0	0.77	2.97	0.60	5.80			• • •	
	includina	120.8	125.3	4.5	3.0	0.32	24.2	0.04	0.09	0.25	1.10				
	including	<i>124.3</i> 210.5	<i>125.3</i> 223.9	<i>1</i> 13.4	<i>0.7</i> 9.5	1.25 0.28	71.7 2.6	0.10 0.03	0.14 0.07	0.45 0.00	<i>3.05</i> 0.37				
		251.9	262.9	11	8.1	0.37	6.3	0.12	0.14	0.02	0.61				
	including	257.5	258.9	1.4	1.0	1.14	3.8	0.04	0.10	0.00	1.27				
		290.6 347.1	291.6 350.1	1 3	0.8 2.3	0.10 0.35	12.1 18.5	0.03 0.08	0.67 0.11	0.04 0.07	0.70 0.80				
				-											

		from	to	longth	truo width	۸.,	Δα	Pb	Zn	Cu	ΛυΕα				
		m	to m	length m	true width m	Au g/t	Ag g/t	%	%	%	AuEq g/t				
Hole ID:	ACD20-178	X (m):	260,736.0	Y (m):	2,901,323.6	Z (m):	1844.9	Dip (deg):	47	Az. (deg):	17	Area:	E. Guadalupe	Company:	CRISCORA
		205 287.2	206.1 299.4	1.1 12.15	0.8 9.1	0.21 0.44	13.0 30.0	0.02 0.05	0.13 0.19	0.01 0.03	0.49 1.02				
	including	297.1	298.4	1.25	0.9	1.03	185.0	0.24	0.61	0.08	4.15				
		327.2	330.3	3.1	2.4	0.23	8.3	0.07	0.23	0.02	0.51				
		334.5 383.5	371.5 407.0	36.95 23.5	28.1	0.24 0.20	10.4	0.13 0.28	0.51 0.81	0.01 0.04	0.73 1.00				
	including	384.6	388.1	3.5	18.3 2.7	0.20	14.4 <i>64.2</i>	1.65	4.00	0.04	4.63				
	including	402	403.0	1	0.8	0.72	31.5	0.33	0.88	0.06	1.84				
Hole ID:	ACD20-179	X (m):	258,477.1	Y (m):	2,902,308.5	Z (m):	1992.2	Dip (deg):	50	Az. (deg):	180	Area:	Guadalupe	Company:	CRISCORA
		57.7 135.8	59.0 138.3	1.3 2.5	0.8 1.7	0.65 0.12	49.5 11.5	0.20 0.09	1.09 0.39	0.15 0.12	2.23 0.71				
		216.9	224.1	7.25	5.0	1.49	43.0	1.33	0.81	0.14	3.24				
	including	218.8	221.4	2.65	1.8	3.78	103.6	3.43	1.93	0.35	8.09				
Hole ID:	ACD20-180	X (m):	258,477.0	Y (m):	2,902,308.5 0.5	Z (m): 0.43	1992.2	Dip (deg): 0.79	60	Az. (deg):	180	Area:	La Cenicera	Company:	CRISCORA
		59.95 182.4	61.0 184.3	1 1.9	1.0	0.43	35.4 20.0	0.79	4.43 0.46	0.20 0.15	3.89 1.09				
		282.4	287.2	4.8	2.8	1.75	12.9	0.16	0.63	0.10	2.48				
	including	282.4	285.6	3.15	1.8	2.44	10.5	0.14	0.27	0.03	2.84			_	
Hole ID:	ACD20-181	X (m): 121.8	261,180.8 123.0	Y (m): 1.2	2,902,035.7 0.7	Z (m): 0.14	1642.3 7.2	Dip (deg): 0.11	57 0.21	Az. (deg): 0.01	105 0.41	Area:	Mexico Libre	Company:	CRISCORA
		168.5	184.3	15.85	9.0	0.39	20.6	0.39	0.60	0.02	1.18				
	including	168.5	172.4	3.9	2.2	0.94	52.2	1.41	2.12	0.08	3.46				
Hole ID:	ACD20-182	X (m): 143.9	258,198.5 145.0	Y (m): 1.1	2,902,239.1 0.8	Z (m): 0.07	1980.6 29.5	Dip (deg): 0.20	47 0.01	Az. (deg): 0.01	180 0.57	Area:	La Cenicera	Company:	CRISCORA
Hole ID:	ACD20-183	X (m):	261,031.4	Y (m):	2,901,487.6	Z (m):	1633.8	Dip (deg):	47	Az. (deg):	310	Area:	La Cenicera	Company:	CRISCORA
		122.9	187.6	64.7	46.6	0.06	3.4	0.01	0.02	0.00	0.12				
		189.6	193.1	3.5	2.6	0.08	8.3	0.35	0.30	0.02	0.53				
	including	218.1 239.6	240.8 240.8	22.7 1.2	16.8 <i>0.9</i>	0.12 <i>1.03</i>	7.3 41.3	0.06 <i>0.04</i>	0.14 <i>0.04</i>	0.02 <i>0.13</i>	0.34 1.84				
		267	299.4	32.4	24.6	0.16	19.2	0.18	0.35	0.05	0.76				
	including	293.8	297.9	4.1	3.1	0.45	41.6	0.52	1.05	0.09	1.93	_		_	
Hole ID: Hole ID:	ACD20-184 ACD20-185	X (m): X (m):	258,197.8 261,032.7	Y (m): Y (m):	2,902,238.6 2,901,485.9	Z (m): Z (m):	1980.6 1633.7	Dip (deg): Dip (deg):	47 47	Az. (deg): Az. (deg):	215 180	Area: Area:	Guadalupe E. Guadalupe	Company: Company:	CRISCORA CRISCORA
Hole ID.	ACD20-103	138.7	141.0	2.3	1.7	1.51	240.2	0.12	0.22	0.07	5.14	Alea.	L. Guadalupe	company.	CHISCONA
		228.2	245.2	16.95	12.7	0.08	13.9	0.05	0.16	0.01	0.39				
Hole ID:	ACD20-186	X (m):	259,008.2 110.5	Y (m): 87	2,901,387.5	Z (m): 0.38	2017.8	Dip (deg):	47	Az. (deg): 0.03	0	Area:	Guadalupe	Company:	CRISCORA
	including	23.45 <i>54.95</i>	57.1	2.1	73.1 <i>1.8</i>	0.38	15.5 134.0	0.05 <i>0.05</i>	0.10 <i>0.01</i>	0.05	0.73 2.71				
	including	103.2	107.3	4.1	3.4	0.78	62.3	0.20	0.85	0.21	2.50				
Hole ID:	ACD20-187	X (m):	258,548.6	Y (m):	2,902,359.4	Z (m):	1972.5	Dip (deg):	50	Az. (deg):	170	Area:	La Cenicera	Company:	CRISCORA
		180.7 255.7	181.7 256.8	1 1.1	0.7 0.7	0.21 0.28	43.4 58.2	0.13 1.35	0.46 1.02	0.12 0.29	1.30 2.58				
		307.7	316.3	8.6	5.8	2.22	20.9	0.37	1.63	0.23	3.63				
	including	307.7	310.7	3	2.0	5.68	49.8	0.93	4.48	0.18	9.38				
Hole ID:	ACD20-188	X (m):	260,252.9	Y (m): 15.7	2,901,318.1 9.7	Z (m):	1835.0 20.9	Dip (deg):	60 1.20	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
	including	269.8 272.5	285.5 278.3	5.85	3.6	0.36 <i>0.49</i>	33.9	0.45 <i>0.84</i>	1.30 2.61	0.01 0.02	1.53 2.71				
Hole ID:	ACD20-189	X (m):	260,023.3	Y (m):	2,903,858.1	Z (m):	1456.4	Dip (deg):	47	Az. (deg):	0	Area:	San Francisco	Company:	CRISCORA
		50.9	61.0	10.1	10.0	0.73	54.9	0.14	0.31	0.02	1.75				
Hole ID:	including ACD20-190	<i>57.9</i> X (m) :	59.4 258,548.6	1.5 Y (m):	1.5 2,902,359.4	2.15 Z (m) :	48.9 1972.3	0.19 Dip (deg):	0.55 50	0.01 Az. (deg):	3.22 150	Area:	La Cenicera	Company:	CRISCORA
Hole ID.	ACD20 150	84.05	85.1	1	0.7	0.70	13.6	0.07	0.13	0.03	1.03	Alcu.	Lu cemeeru	company.	CHISCOHA
		195.6	199.9	4.35	3.1	0.10	7.0	0.02	0.14	0.06	0.38				
		233 284.5	236.4 289.2	3.4 4.7	2.4 3.4	0.27 0.55	13.1 12.0	0.11 0.32	0.17	0.13 0.04	0.78 1.21				
	including	286.8	287.9	1.1	0.8	1.21	19.7	0.32	0.57 1.14	0.04	2.56				
	,	304.5	316.1	11.6	8.5	0.10	7.4	0.08	0.18	0.03	0.38				
Hala IB.	4.6020.404	344.5	345.5	1	0.7	0.42	9.7	0.13	0.22	0.01	0.74	•	C F		CDICCODA
Hole ID:	ACD20-191	X (m): 60.9	260,024.1 76.0	Y (m): 15.05	2,903,856.6 14.9	Z (m): 0.40	1456.8 28.5	Dip (deg): 0.22	47 0.37	Az. (deg): 0.02	30 1.11	Area:	San Francisco	Company:	CRISCORA
	including	72.95	74.5	1.5	1.5	1.70	98.6	0.48	1.43	0.03	4.07				
Hole ID:	ACD20-192	X (m):	260,022.4	Y (m):	2,903,859.0	Z (m):	1456.5	Dip (deg):	47	Az. (deg):	330	Area:	San Francisco	Company:	CRISCORA
	including	42.2 59.6	62.8 <i>60.7</i>	20.6 1.1	20.4 1.1	0.26 <i>0.76</i>	25.1 71.3	0.06 <i>0.19</i>	0.15 <i>0.33</i>	0.01 <i>0.01</i>	0.72 2.02				
Hole ID:	ACD22-193	X (m):	260,775.1	Y (m):	2,901,372.0	Z (m):	1822.2	Dip (deg):	43	Az. (deg):	12	Area:	Guadalupe	Company:	CRISCORA
		205.4	275.0	69.62	51.5	0.21	16.8	0.01	0.14	0.03	0.57				
	including	240.2	247.0	6.8	5.0	0.57	104.9	0.02	0.24	0.03	2.23				
	including	275 291	344.7 294.0	69.62 <i>3.0</i>	52.2 2.3	0.31 2.95	24.7 142.0	0.19 <i>0.14</i>	0.29 <i>0.19</i>	0.02 <i>0.02</i>	0.91 5.12				
	including	309.7	311.4	1.7	1.3	0.73	56.3	2.38	0.21	0.07	2.65				
Hole ID:	ACD22-194	X (m):	260,305.1	Y (m):	2,901,396.6	Z (m):	1863.4	Dip (deg):	45	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
Hole ID:	ACD22-195	162.9 X (m):	173.3 259,965.8	10.4 Y (m):	8.0 2,901,398.2	0.40 Z (m):	12.9 1794.0	0.04 Dip (deg):	0.15 47	0.01 Az. (deg):	0.69 0	Area:	Guadalupe	Company:	CRISCORA
noie ib.	ACD22-133	101.5	121.7	20.2	15.4	0.98	154.9	0.32	0.10	0.06	3.41	Alta.	Guadalupe	company.	CHISCORA
	including	104.5	117.2	12.7	9.7	1.39	222.9	0.41	0.02	0.08	4.79				
Hole ID:	ACD22-196	X (m):	260,751.5	Y (m):	2,901,285.7	Z (m):	1843.3	Dip (deg):	45	Az. (deg):	20	Area:	Guadalupe	Company:	CRISCORA
		188 309.5	190.8 358.0	2.75 48.5	2.0 34.9	0.24 0.33	14.1 11.6	0.01 0.02	0.04 0.09	0.01 0.03	0.48 0.59				
	including	340	344.2	4.2	3.0	0.53	76.8	0.10	0.03	0.03	1.76				
	_	410.4	419.6	9.25	6.8	0.48	17.8	0.22	0.45	0.03	1.10				
Hole ID:	ACD22-197	X (m):	259,837.1	Y (m):	2,901,423.4	Z (m):	1745.9	Dip (deg):	47	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
	including	30 <i>51.3</i>	79.3 <i>52.7</i>	49.3 1.4	37.0 <i>1.1</i>	0.42 <i>3.62</i>	11.3 <i>16.1</i>	0.10 <i>0.17</i>	0.28 0.24	0.04 <i>0.06</i>	0.82 <i>4.14</i>				
	meraumy	51.5	32.7	1.4	1.1	3.02	10.1	0.17	0.24	0.00	7.14				

		from	to	length	true width	Au	Ag	Pb	Zn	Cu	AuEq				
		m	m	m	m	g/t	g/t	%	%	%	g/t				
Hole ID:	ACD22-198	X (m):	259,687.4	Y (m):	2,901,297.2	Z (m):	1860.2	Dip (deg):	45	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		51.65	59.2	7.5	5.9	0.35	1.1	0.00	0.02	0.01	0.39				
		149.9	165.4	15.5	12.2	0.30	3.9	0.01	0.10	0.01	0.42				
		184.9	187.9	3	2.5	0.72	67.2	0.25	0.72	0.29	2.59				
		203.6	248.7	45.1	37.0	0.27	6.9	0.07	0.23	0.04	0.58				
	including	209.7	218.7	9	7.4	0.76	24.6	0.18	0.48	0.15	1.66				
Hole ID:	ACD22-199	X (m):	259,428.0	Y (m):	2,901,398.9	Z (m):	1926.0	Dip (deg):	47	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		95.9	108.3	12.4	10.7	0.23	6.2	0.08	0.22	0.06	0.55				
	including	99.9	101.3	1.4	1.2	0.41	15.2	0.40	1.10	0.10	1.51				
	meraamg	117.3	126.0	8.7	7.5	0.11	2.4	0.02	0.10	0.02	0.23				
Hole ID:	ACD22-200	X (m):	260,591.8	Y (m):	2,901,343.4	Z (m):	1862.8	Dip (deg):	43	Az. (deg):	350	Area:	Guadalupe	Company:	CRISCORA
Hole ID:	ACD22-201	X (m):	259,557.9	Y (m):	2,901,356.7	Z (m):	1892.2	Dip (deg):	47	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
Hole ID.	ACDEL 201	24	32.0	8	6.8	0.11	9.9	0.17	0.13	0.01	0.40	Aicu.	Guudalape	company.	CHISCOHA
		123.7	156.9	33.2	28.6	0.42	18.2	0.17	0.35	0.01	1.02				
	including	127.7	134.4	6.7	5.8	1.06	51.2	0.38	0.85	0.10					
Hele ID:	including ACD22-202		260,496.0				1815.6				2.53 0	A	Cuadaluna	C	CRISCORA
Hole ID:	ACDZZ-ZUZ	X (m):		Y (m): 27.5	2,901,260.7	Z (m):	27.2	Dip (deg):	55	Az. (deg):		Area:	Guadalupe	Company:	CRISCORA
	to almates a	351	378.5		19.0	0.32		0.09	0.28	0.01	0.90				
Hala IB.	including	355	358.0	3	2.1	0.63	149.0	0.18	0.59	0.02	3.13	•	Considerations of		CDICCODA
Hole ID:	ACD22-203	X (m):	259,205.9	Y (m):	2,901,371.3	Z (m):	1955.4	Dip (deg):	47	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		104.9	118.8	13.9	12.0	1.66	49.4	0.38	0.47	0.28	3.17				
	including	111.3	115.8	4.5	3.9	4.35	87.9	0.51	0.87	0.79	7.44				
		127.3	142.8	15.5	13.5	0.46	9.6	0.03	0.16	0.02	0.72				
	including	129.3	130.8	1.5	1.3	0.85	37.2	0.10	0.85	0.05	1.94				
Hole ID:	ACD22-204	X (m):	258,964.3	Y (m):	2,901,266.1	Z (m):	1950.7	Dip (deg):	50	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		92.5	95.0	2.5	1.7	0.66	2.3	0.01	0.03	0.00	0.71				
		127.5	135.0	7.5	5.1	0.21	3.2	0.00	0.13	0.05	0.40				
		150	167.5	17.5	11.9	0.23	7.9	0.08	0.21	0.02	0.51				
		195.7	238.3	42.6	29.0	0.27	12.4	0.03	0.08	0.01	0.52				
	including	231.2	232.8	1.6	1.1	1.73	112.0	0.03	0.05	0.00	3.34				
		270.2	271.5	1.3	0.9	1.99	19.6	0.02	0.04	0.01	2.31				
Hole ID:	ACD22-205	X (m):	260,633.2	Y (m):	2,901,178.2	Z (m):	1782.5	Dip (deg):	47	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		426.8	427.8	1	0.8	0.06	36.6	2.82	4.35	0.17	4.22				
		444.2	483.6	39.4	30.7	0.23	5.4	0.15	0.46	0.02	0.64				
	including	446.4	455.0	8.6	6.7	0.56	17.3	0.53	1.68	0.04	1.95				
Hole ID:	ACD22-206	X (m):	259,110.3	Y (m):	2,901,243.8	Z (m):	1955.4	Dip (deg):	60	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		294.5	307.0	12.5	9.4	0.23	16.2	0.08	0.11	0.07	0.65				
	including	296.5	300.9	4.4	3.3	0.16	34.4	0.19	0.20	0.20	1.13				
Hole ID:	ACD22-207	X (m):	259,408.5	Y (m):	2,901,215.0	Z (m):	1844.3	Dip (deg):	58	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		227.5	235.0	7.5	5.7	0.49	2.7	0.00	0.02	0.01	0.55				
		315	370.0	55	41.8	0.31	16.1	0.22	0.42	0.10	1.00				
	including	333.7	335.7	2.05	1.6	0.69	95.2	2.16	4.94	0.49	6.21				
	including	357.5	359.0	1.5	1.1	1.44	17.6	0.25	0.46	0.15	2.26				
Hole ID:	ACD22-208	X (m):	260,633.1	V ().	2,901,178.2	Z (m):	1782.6	Dip (deg):	55	Az. (deg):	0	Area:	Guadalupe	Company:	CRISCORA
		A (IIII).	200,033.1	Y (m):	2,301,170.2										
		478.8	480.6	1.8	1.2	1.48	30.3	0.09	0.10	0.01	2.01				
									0.10 0.92	0.01 0.03	0.98				
	including	478.8	480.6	1.8	1.2	1.48	30.3	0.09							
Hole ID:	including ACD22-209	478.8 522.7	480.6 534.5	1.8 11.8	1.2 7.9	1.48 0.21	30.3 9.4	0.09 0.26	0.92	0.03	0.98	Area:	San Francisco	Company:	CRISCORA
Hole ID:		478.8 522.7 <i>527.3</i>	480.6 534.5 <i>528.3</i>	1.8 11.8 1	1.2 7.9 <i>0.7</i>	1.48 0.21 <i>0.33</i>	30.3 9.4 <i>32.9</i>	0.09 0.26 <i>0.88</i>	0.92 3.42	0.03 <i>0.05</i>	0.98 3.02	Area:	San Francisco		
Hole ID:		478.8 522.7 <i>527.3</i> X (m):	480.6 534.5 <i>528.3</i> 260,121.2	1.8 11.8 1 Y (m):	1.2 7.9 0.7 2,903,713.9	1.48 0.21 0.33 Z (m) :	30.3 9.4 <i>32.9</i> 1456.6	0.09 0.26 0.88 Dip (deg):	0.92 3.42 47	0.03 0.05 Az. (deg):	0.98 3.02 0	Area:	San Francisco		
Hole ID:	ACD22-209	478.8 522.7 527.3 X (m): 89.9	480.6 534.5 528.3 260,121.2 111.5	1.8 11.8 1 Y (m): 21.6	1.2 7.9 0.7 2,903,713.9 21.4	1.48 0.21 0.33 Z (m): 0.19	30.3 9.4 32.9 1456.6 20.9	0.09 0.26 <i>0.88</i> Dip (deg): 0.33	0.92 3.42 47 0.64	0.03 0.05 Az. (deg): 0.02	0.98 3.02 0 0.98	Area:	San Francisco San Francisco		
	ACD22-209 including	478.8 522.7 527.3 X (m): 89.9 108.7	480.6 534.5 528.3 260,121.2 111.5 111.5	1.8 11.8 1 Y (m): 21.6 2.8	1.2 7.9 0.7 2,903,713.9 21.4 2.8	1.48 0.21 0.33 Z (m): 0.19 0.47	30.3 9.4 32.9 1456.6 20.9 83.6	0.09 0.26 0.88 Dip (deg): 0.33 1.56	0.92 3.42 47 0.64 3.11	0.03 0.05 Az. (deg): 0.02 0.10	0.98 3.02 0 0.98 4.04			Company:	CRISCORA
Hole ID:	including ACD22-210	478.8 522.7 527.3 X (m): 89.9 108.7 X (m):	480.6 534.5 528.3 260,121.2 111.5 111.5 260,120.8	1.8 11.8 1 Y (m): 21.6 2.8 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg):	0.92 3.42 47 0.64 3.11 47	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg):	0.98 3.02 0 0.98 4.04 330	Area:	San Francisco	Company:	CRISCORA
Hole ID:	including ACD22-210	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 101.5	480.6 534.5 528.3 260,121.2 111.5 111.5 260,120.8 260,122.2 109.0	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): Dip (deg): 0.05	0.92 3.42 47 0.64 3.11 47	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): Az. (deg): 0.01	0.98 3.02 0 0.98 4.04 330 30	Area:	San Francisco	Company:	CRISCORA
Hole ID: Hole ID:	including ACD22-210 ACD22-211	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 101.5 X (m):	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): Z (m): 0.09 Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): Dip (deg): 0.05 Dip (deg):	0.92 3.42 47 0.64 3.11 47 47 0.36 60	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): Az. (deg): 0.01 Az. (deg):	0.98 3.02 0 0.98 4.04 330 30 0.35 0	Area: Area:	San Francisco San Francisco	Company: Company: Company:	CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID:	including ACD22-210 ACD22-211	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 101.5	480.6 534.5 528.3 260,121.2 111.5 111.5 260,120.8 260,122.2 109.0	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): Z (m): 0.09	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): Dip (deg): 0.05	0.92 3.42 47 0.64 3.11 47 47 0.36	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): Az. (deg): 0.01	0.98 3.02 0 0.98 4.04 330 30	Area: Area:	San Francisco San Francisco	Company: Company: Company:	CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 101.5 X (m): 424.4 483.4	480.6 534.5 528.3 260,121.2 111.5 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m): 2.5 23.2	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 2 (m): 0.09 Z (m): 0.03 0.50	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.02	0.92 3.42 47 0.64 3.11 47 47 0.36 60 0.02 0.27	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01	0.98 3.02 0 0.98 4.04 330 30 0.35 0 0.76	Area: Area:	San Francisco San Francisco	Company: Company: Company:	CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 101.5 X (m): 424.4 483.4 497.6	480.6 534.5 528.3 260,121.2 111.5 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m): 2.5 23.2 1.5	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.09 Z (m): 0.03 0.50 0.59	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.05 0.02 0.08	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 0.27 0.29	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01	0.98 3.02 0 0.98 4.04 330 30 0.35 0 0.76 0.96 2.04	Area: Area:	San Francisco San Francisco	Company: Company: Company:	CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 X (m):	480.6 534.5 528.3 260,121.2 111.5 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 2 (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.02 0.08 0.10 Dip (deg):	0.92 3.42 47 0.64 3.11 47 47 0.36 60 0.02 0.27 0.29	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 0.01 Az. (deg):	0.98 3.02 0 0.98 4.04 330 30 0.35 0 0.76 0.96 2.04 0	Area: Area: Area:	San Francisco San Francisco Guadalupe	Company: Company: Company:	CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID:	ACD22-209 including ACD22-210 ACD22-211 ACD22-212 including ACD22-213	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 X (m): 225.7	480.6 534.5 528.3 260,121.2 111.5 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.03	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg):	0.92 3.42 47 0.64 3.11 47 47 0.36 60 0.02 0.27 0.29 47 2.22	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): Az. (deg): 0.01 0.01 0.01 0.01 0.01 4z. (deg):	0.98 3.02 0 0.98 4.04 330 30 0.35 0 0.76 0.96 2.04 0	Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco	Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 X (m): 225.7 X (m):	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): Z (m): 0.09 Z (m): 0.03 0.50 0.50 0.50 2 (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.05 0.02 0.08 0.10 Dip (deg): 0.38 Dip (deg):	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 0.27 0.29 47 2.22 47	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 0.01 Az. (deg): 0.01 Az. (deg):	0.98 3.02 0 0.98 4.04 330 30 0.35 0 0.76 0.96 2.04 0	Area: Area: Area:	San Francisco San Francisco Guadalupe	Company: Company: Company:	CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 X (m): 225.7 X (m):	480.6 534.5 528.3 260,121.2 111.5 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): Z (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.03 Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.8 3.0 1825.8 50.3 88.8 1457.1 11.3 1457.0 7.3	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.38 Dip (deg): 0.38	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.01	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 1.53 25 0.40	Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco San Francisco	Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID:	ACD22-209 including ACD22-210 ACD22-211 ACD22-212 including ACD22-213	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 487.6 X (m): 225.7 X (m): 225.7 X (m):	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,171.4 226.9 260,171.2 212.5 260,158.4	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,580.3 1.9 2,903,580.3	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.03 Z (m): 0.03 Z (m): 0.03	30.3 9.4 32.9 83.6 1456.6 20.9 83.6 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3 1457.0 7.3 1816.8	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.38 Dip (deg): 0.01 Dip (deg):	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01 55	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg):	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 1.53 25 0.40 0	Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco	Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-213 ACD22-214 ACD22-215	478.8 522.7 \$ (m): 89.9 108.7 \$ (m): 101.5 \$ (m): 424.4 497.6 \$ (m): 225.7 \$ (m): 210.6 \$ (m): 394.2	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): Z (m): 0.09 Z (m): 0.03 0.50 Z (m): 0.03 Z (m): 0.25 Z (m): 0.26	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3 1457.0 7.3 1816.8	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.38 Dip (deg): 0.01 Dip (deg): 0.01 Dip (deg): 0.01 Dip (deg): 0.01	0.92 3.42 47 0.64 3.11 47 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01 55 0.34	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.00	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 1.53 25 0.40 0	Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco San Francisco	Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including	478.8 522.7 3 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 497.6 X (m): 225.7 X (m): 210.6 X (m): 394.2	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 2.5 23.2 1.5 Y (m): 1.9 Y (m): 1.9 Y (m): 1.9	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.03 Z (m): 0.29 Z (m): 0.29 Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.0 7.3 1816.8 19.6 139.0	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.33 Dip (deg): 0.01 Dip (deg): 0.01 Dip (deg): 0.01 Dip (deg): 0.07 0.50	0.92 3.42 47 0.64 3.11 47 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01 55 0.34	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg):	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 1.53 25 0.40 0	Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-215	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 6 X (m): 225.7 X (m): 394.2 394.2 X (m):	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m): 31.1 1.2 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 Z (m): 0.03 Z (m): 0.03 Z (m): 0.25 Z (m): 0.27 Z (m): 0.27 Z (m): 0.28 Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 19.3 88.8 1457.1 11.3 1457.0 7.3 1816.8 19.6 139.0 1457.0	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.38 Dip (deg): 0.01 Dip (deg): 0.07 0.550 Dip (deg):	0.92 3.42 47 0.64 3.11 47 47 0.36 60 0.02 0.27 0.29 47 0.01 55 0.34 0.98 47	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.01 Az. (deg):	0.98 3.02 0 0.98 4.04 330 30 0.76 0.96 2.04 0 1.53 25 0.40 0 0.76 3.74 335	Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco San Francisco Guadalupe San Francisco	Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including	478.8 522.7 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 X (m): 225.7 X (m): 210.6 X (m): 394.2 394.2 X (m):	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m): 1.9 Y (m):	1.2 7.9 0.7 2,903,713.9 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,903,579.5 2,901,240.8	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 2 (m): 0.09 Z (m): 0.03 0.50 0.50 0.50 Z (m): 0.03 Z (m): 0.26 1.03 Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3 1457.0 7.3 1816.8 19.6 139.0 1457.0	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.38 Dip (deg): 0.01 Dip (deg): 0.07 0.50 Dip (deg):	0.92 3.42 47 0.64 3.11 47 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01 55 0.34 0.98	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 0.01 0.01 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg):	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 1.53 25 0.40 0 0.76 3.74 335 0	Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-215	478.8 522.7 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 X (m): 225.7 X (m): 210.6 X (m): 394.2 394.2 X (m): X (m):	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8	1.8 11.8 1 Y (m): 21.6 28 Y (m): Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.9 Y (m): 1.9 Y (m): 1.9 Y (m): 1.9 Y (m): 1.0 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.03 Z (m): 0.29 Z (m): 0.26 1.03 Z (m): 0.26 1.03 Z (m): 0.42	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3 1457.0 7.3 1816.8 19.6 139.0 1457.0	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.01 Dip (deg): 0.01 Dip (deg): 0.07 0.50 Dip (deg): 0.10 Dip (deg): 0.07 0.50 Dip (deg): 0.14	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01 55 0.34 0.98 47	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg):	0.98 3.02 0 0.98 4.04 330 30 0.35 0 0.76 0.96 2.04 0 0.76 3.74 335 0 0.61	Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco San Francisco Guadalupe San Francisco	Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-215	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 424.4 483.4 487.6 X (m): 225.7 X (m): 210.6 X (m): 394.2 X (m): 190.4 470.3	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m): 31.1 1.2 Y (m): 31.1 6 13.8	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 Z (m): 0.03 Z (m): 0.29 Z (m): 0.29 Z (m): 0.29 Z (m): 0.29 Z (m): 0.29 Z (m): 0.40 Z (m): 0.40 Z (m): 0.41 Z (m): 0.41 Z (m): 0.42	30.3 9.4 32.9 1456.6 20.9 83.6 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3 1457.0 7.3 1816.8 19.6 139.0 1457.0 1837.3 3.9	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.07 0.07 0.50 Dip (deg): 0.07 0.50 Dip (deg): 0.10	0.92 3.42 47 0.64 3.11 47 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01 55 0.34 6.98 47 65 0.14 0.58	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.03	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 2.04 0 0.76 3.74 335 0 0.61 1.09	Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-215 ACD22-217 ACD22-217	478.8 522.7 \$ (m): 89.9 108.7 \$ (m): \$ (m): 101.5 \$ (m): 424.4 483.4 497.6 \$ (m): 225.7 \$ (m): 210.6 \$ (m): 394.2 394.2 \$ (m): \$	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1 260,162.9	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m): 31.1 1.2 Y (m): 6 1.3 X (m): Y (m): Y (m): 1.9 Y (m): 1.9 Y (m): 1.9 Y (m): 1.0 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,580.3 1.9 2,903,580.3 1.9 2,901,221.4 21.5 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.03 Z (m): 0.26 1.03 Z (m): 0.26 1.03 Z (m): 0.42 0.16 Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 884.7 11.3 1457.0 7.3 1816.8 19.6 139.0 1457.0 1457.0	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.01 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg):	0.92 3.42 47 0.64 3.11 47 47 47 0.36 60 0.02 0.27 0.29 47 0.01 55 0.34 65 0.14 0.58	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.01 0.20 Az. (deg): 0.20 Az. (deg):	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 0.76 3.74 335 0 0.61 1.09 0	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-215	478.8 522.7 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 225.7 X (m): 225.7 X (m): 210.6 X (m): 394.2 394.2 X (m): 190.4 470.3 X (m):	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m): 6 13.8 Y (m): 9 Y (m): 9 Y (m): 1.9 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2,803,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 2 (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.03 Z (m): 0.26 1.03 Z (m): 0.26 2 (m): 0.42 0.16 Z (m): 2 (m): 0.42 0.16	30.3 9.4 32.9 1456.6 20.9 83.6 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 111.3 1457.0 7.3 1816.8 19.6 139.0 1457.0 1	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.01 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): Dip (deg):	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01 55 0.34 0.98 47 65 0.14	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.20 Az. (deg): Az. (deg):	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 0.76 3.74 335 0 0.61 1.09 0	Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-215 ACD22-217 ACD22-217	478.8 522.7 3 X (m): 899 108.7 X (m): X (m): 424.4 483.4 497.6 X (m): 225.7 X (m): 210.6 X (m): 394.2 X (m): 394.2 X (m): X (m): 67.5	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1 260,162.9 259,540.6 97.6	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.9 Y (m): 1.9 Y (m): Y (m): 1.9 Y (m): Y (m): 31.1 1.2 Y (m): Y (m): Y (m): 31.1	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.50 0.59 Z (m): 0.29 Z (m): 0.26 1.03 Z (m): 0.16 Z (m): 0.42 0.16 Z (m): 0.10	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3 1457.0 7.3 1816.8 19.6 139.0 1457.0 1837.3 17.3 1447.4 1810.5 6.2	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.01 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): Dip (deg): 0.14 0.18 Dip (deg): 0.07	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 0.27 0.29 47 0.01 55 0.34 0.98 47 63 0.14 0.58 47 63	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.20 Az. (deg): 0.20 Az. (deg):	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 2.04 0 1.53 25 0.40 0 0.76 3.74 335 0 0.61 1.09 0 0.40	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-215 ACD22-217 ACD22-217	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 101.5 X (m): 424.4 483.4 497.6 X (m): 225.7 X (m): 210.6 394.2 394.2 394.2 394.2 394.2 3 (m): X (m): X (m): 50.3 X (m): X (m): 57.5	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1 260,162.9 259,540.6 97.6 375.5	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m): 31.1 1.2 Y (m): 6 13.8 Y (m): Y (m): 30.1 19.5	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1 19.9 13.5	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 Z (m): 0.03 Z (m): 0.26 Z (m): 0.27 Z (m): 0.29 Z (m): 0.20 Z (m): 0.16 Z (m): 0.16 Z (m): 0.16 Z (m): 0.16	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 19.3 88.8 1457.1 11.3 1457.0 139.0 1457.0 145	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.01 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): 0.18 Dip (deg): 0.07 0.10	0.92 3.42 47 0.64 3.11 47 47 0.36 60 0.02 0.27 0.29 47 0.01 55 0.34 47 65 0.14 0.58 47 63 0.33 0.06	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.02 Az. (deg): 0.03 Az. (deg): 0.03 Az. (deg): 0.01 0.20 Az. (deg): 0.10 0.20 Az. (deg): 0.10 0.20 Az. (deg): 0.01 0.20 Az. (deg):	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 1.53 25 0.40 0 0.76 3.74 335 0 0.61 1.09 0 0 0.40 0.27	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-210 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-214 ACD22-215 including ACD22-216 ACD22-217 ACD22-217	478.8 522.7 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 X (m): 225.7 X (m): 210.6 X (m): 394.2 394.2 X (m): 190.4 470.3 X (m): 57.5 356 389.5	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1 260,162.9 259,540.6 97.6 375.5 432.2	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m): 6 13.8 Y (m): Y (m): 6 13.8 Y (m): 4.65	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1 19.9 13.5 29.9	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 2 (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.26 1.03 Z (m): 0.26 2 (m): 0.26 2 (m): 0.26 1.03 Z (m): 0.10 0.10 0.10 0.10 0.11	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3 1457.0 7.3 1816.8 19.6 139.0 1457.0 1457.0 1457.0 1457.0 1457.0 1457.0	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.38 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): 0.18 Dip (deg): 0.19 0.10 Dip (deg): 0.14 0.18 Dip (deg): 0.14 0.18 Dip (deg): 0.14 0.18 Dip (deg): 0.17 0.18 Dip (deg): 0.07 0.07 0.01	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 7 0.29 47 2.22 47 0.01 55 0.34 0.98 47 65 0.14 0.58 47 63 0.33 0.06 1.55	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.02 Az. (deg): Az. (deg): 0.01 0.01 0.20 Az. (deg): 0.01 0.01 0.21	0.98 3.02 0 0.98 4.04 330 0.35 0.76 0.96 2.04 0 0.76 3.74 335 0 0.61 1.09 0 0.40 0.27 2.05	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-212 ACD22-211 ACD22-212 Including ACD22-213 ACD22-214 ACD22-215 Including ACD22-216 ACD22-217 ACD22-217	478.8 522.7 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 X (m): 225.7 X (m): 210.6 394.2 X (m): 190.4 470.3 X (m): 190.4 470.3 X (m): 67.5 356 389.5	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1 260,162.9 259,540.6 97.6 375.5 432.2 395.8	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m): 1.2 Y (m): 31.1 1.2 Y (m): 6 13.8 Y (m): 9 130.1 19.5 42.65 6.3	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1 19.9 13.5 2,90,43	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.26 1.03 Z (m): 0.42 0.16 Z (m): 0.42 0.16 0.10 0.10 0.10 0.10	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 19.3 88.8 1457.1 11.3 1457.0 7.3 1816.8 19.6 139.0 1457.0 1457.0 1457.0 1457.0 1457.0 3.9 17.3 1447.4 1810.5 6.2 5.3	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.01 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): 0.07 0.00 0.10 Dip (deg): 0.14 0.18 Dip (deg): 0.07 0.01 0.07 0.09	0.92 3.42 47 0.64 3.11 47 0.36 60 0.027 0.29 47 0.01 55 0.34 0.98 47 65 0.14 0.58 47 63 0.33 0.33	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.20 Az. (deg): 0.21 0.21	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 2.04 0 0.76 3.74 335 0 0.61 1.09 0 0.40 0.27 2.05 3.91	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-211 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-216 ACD22-217 ACD22-218 ACD22-219	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 424.4 483.4 487.6 X (m): 225.7 X (m): 225.7 X (m): 210.6 X (m): 394.2 X (m): X (m): 536.389.5 389.5	480.6 534.5 528.3 260,121.2 111.5 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 260,162.9 27,6 375.5 432.2 395.8 409.3	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m): 1.2 Y (m): 1.9 Y (m): 31.1 1.2 Y (m): Y (m): 30.1 19.5 42.65 6.3 6.3	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1 19.9 13.5 2,903,462.0 2,901,219.1	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 Z (m): 0.29 Z (m): 0.26 Z (m): 0.16 Z (m): 0.16 Z (m): 0.16 Z (m): 0.16 Z (m): 0.16 D.10 0.15 D.32 D.20 D.32 D.33 D.33 D.33 D.33 D.33 D.33 D.33	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 1457.1 11.3 1457.0 1457.0 1457.0 1457.0 1457.0 1457.0 1457.0 1457.0 1457.0 1457.0 1457.0 150.0 160.0 17.3 160.0 160	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.01 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): 0.18 Dip (deg): 0.10 O.19 O.50 Dip (deg): 0.10 O.50 Dip (deg): 0.14 0.18 Dip (deg): 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01 55 0.34 0.98 47 65 0.14 0.58 47 63 0.33 0.06 1.55 3.48 4.84	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.21 0.01	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 2.04 0 1.53 25 0.40 0 7.76 3.74 335 0 0.61 1.09 0 0.40 0.27 2.05 3.91 6.25	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-212 ACD22-211 ACD22-212 Including ACD22-213 ACD22-214 ACD22-215 Including ACD22-216 ACD22-217 ACD22-217	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 X (m): 225.7 X (m): 210.6 X (m): 394.2 3	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1 260,162.9 259,540.6 97.6 375.5 432.2 395.8 409.3 259,755.4	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m): 31.1 1.2 Y (m): Y (m): 6 13.8 Y (m): Y (m): 30.1 1.9.5 42.65 6.3 Y (m):	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1 19.9 13.5 29.9 4.3 4.3 2,901,209.6	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.03 Z (m): 0.26 1.03 Z (m): 0.26 1.03 Z (m): 0.15 0.15 0.15 0.32 0.74 0.63 Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 19.3 1847.0 7.3 1816.8 19.6 139.0 1457	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.07 0.55 Dip (deg): 0.14 0.18 Dip (deg): 0.07 0.19 Dip (deg): 0.14 0.18 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): 0.07 0.50 Dip (deg): 0.18 Dip (deg): 0.07 0.50 Dip (deg): 0.18 Dip (deg): 0.07 0.01 0.40 0.99 0.81 Dip (deg):	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01 55 0.34 0.98 47 63 0.34 0.58 47 63 0.06 1.55 3.48 4.84 4.84 4.84 4.84 4.84 4.84 4.84	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.01 Az. (deg): 0.01 0.03 Az. (deg): Az. (deg): 0.01 0.03 Az. (deg): Az. (deg): 0.01 0.21 0.21 0.13 0.96 Az. (deg):	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 0.76 3.74 335 0 0.61 1.09 0 0 0.27 2.05 3.91 6.25 0	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-211 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-216 ACD22-217 ACD22-218 ACD22-219	478.8 522.7 X (m): 89.9 108.7 X (m): 101.5 X (m): 424.4 483.4 497.6 225.7 X (m): 210.6 X (m): 394.2 394.2 X (m): 190.4 470.3 X (m): 67.5 356 389.5 403 X (m): 23.5	480.6 534.5 528.3 260,121.2 111.5 120.12.2 109.0 260,313.2 426.9 506.6 499.1 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1 260,162.9 259,540.6 97.6 375.5 432.2 395.8 409.3 259,755.4 101.5	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m): 1.2 Y (m): 31.1 1.2 Y (m): 9 13.8 Y (m): 9 13.8 Y (m): 7 8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1 19.9 13.5 2,903,420.0 4.3 2,901,209.6 43.7	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 2 (m): 0.09 Z (m): 0.03 0.50 0.59 Z (m): 0.26 1.03 Z (m): 0.42 0.16 Z (m): 0.42 0.16 0.10 0.10 0.15 0.10 0.15 0.27 0.74 0.63 Z (m):	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 19.3 1457.0 11.3 1457.0	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): 0.18 Dip (deg): 0.14 0.18 Dip (deg): 0.19 Dip (deg): 0.11 Dip (deg): 0.11 Dip (deg): 0.15 Dip (deg): 0.16 Dip (deg): 0.17 0.18 Dip (deg): Dip (deg): 0.07 0.01 0.19 Dip (deg): 0.07 0.01 0.01 0.40 0.99 0.81 Dip (deg): 0.04	0.92 3.42 47 0.64 3.11 47 0.36 60 0.027 0.29 47 2.22 47 0.01 55 0.34 0.98 47 65 0.14 0.33 0.03 0.33 0.03 47 65 0.14 0.33	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.20 Az. (deg): Az. (deg): Az. (deg): Az. (deg): 0.01 0.03 Az. (deg): Az. (deg): Az. (deg): 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 0.76 3.74 335 0 0.61 1.09 0 0.40 0.27 2.05 3.91 6.25 0 0.43	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-211 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-216 ACD22-217 ACD22-218 ACD22-219	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 424.4 483.4 497.6 X (m): 225.7 X (m): 210.6 X (m): 394.2 X (m): 394.2 X (m): 394.2 X (m): 396.3 396.3 X (m): 356 389.5 403 X (m): 23.5	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1 260,162.9 259,540.6 97.6 375.5 432.2 395.8 409.3 259,755.4 101.5 200.9	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m): 31.1 1.2 Y (m): Y (m): 6 13.8 Y (m): Y (m): 6 30.1 19.5 42.65 6.3 6.3 Y (m): 78 8.6	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1 19.9 13.5 2.99 4.3 4.3 2,901,209.6 43.7 4.8	1.48 0.21 0.33 Z (m): 0.19 Z (m): 0.09 Z (m): 0.03 0.50 Z (m): 0.29 Z (m): 0.29 Z (m): 0.29 Z (m): 0.16 Z (m): Z (m): 0.46 Z (m): 0.16 Z (m): 0.16 Z (m): 0.16 Z (m): 0.17 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3 1457.0 1457	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): 0.07 0.01 0.18 Dip (deg): 0.07 0.01 0.40 0.99 0.81 Dip (deg): 0.01	0.92 3.42 47 0.64 3.11 47 0.36 60 0.027 0.29 47 0.01 55 0.34 0.98 47 65 0.14 0.58 47 63 0.33 0.06 1.55 84 47 63 0.33	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.21 0.01 0.01 0.01 0.01 0.01 0.01	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 2.04 0 0.76 3.74 335 0 0.61 1.09 0 0.40 0.27 2.05 3.91 6.25 0 0.43 0.73	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-211 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-216 ACD22-217 ACD22-218 ACD22-219	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 101.5 X (m): 424.4 483.4 497.6 X (m): 225.7 X (m): 225.7 X (m): 2394.2 394.2	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1 260,162.9 259,540.6 97.6 375.5 432.2 395.8 409.3 259,755.4 101.5 200.9 352.2	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 Y (m): 2.5 23.2 1.5 Y (m): 1.2 Y (m): 31.1 1.9 Y (m): 6 13.8 Y (m): Y (m): 30.1 19.5 42.65 6.3 Y (m): 78 8.6 11.2	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1 19.9 13.5 29.9 4.3 2,901,209.6 43.7 4.8 6.4	1.48 0.21 0.33 Z (m): 0.19 0.47 Z (m): 0.09 Z (m): 0.03 0.50 Z (m): 0.03 Z (m): 0.26 Z (m): 0.27 Z (m): 0.27 Z (m): 0.28 Z (m): 0.16 Z (m): 0.16 Z (m): 0.17 0.32 Z (m): 0.17 0.39 0.24	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 19.3 88.8 1457.1 11.3 1457.0 14	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): 0.14 0.18 Dip (deg): 0.14 0.19 Dip (deg): 0.14 0.19 Dip (deg): 0.14 0.19 Dip (deg): 0.14 0.19 Dip (deg): 0.10 0.01 0.01	0.92 3.42 47 0.64 3.11 47 0.36 60 0.02 0.27 0.29 47 2.22 47 0.01 55 0.34 0.98 47 63 0.58 47 63 0.06 1.55 3.48 4.84 62 0.19 0.25 0.19	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 Az. (deg): 0.01 0.20 Az. (deg): Az. (deg): 0.01 0.21 0.13 0.96 Az. (deg): 0.01 0.01 0.01 0.01	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 0.96 2.04 0 1.53 25 0.40 0.76 3.74 335 0 0.61 1.09 0 0.27 2.05 3.91 6.25 0 0.43 0.73 0.73	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA
Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID: Hole ID:	including ACD22-211 ACD22-211 ACD22-212 including ACD22-213 ACD22-214 ACD22-215 including ACD22-216 ACD22-217 ACD22-218 ACD22-219	478.8 522.7 527.3 X (m): 89.9 108.7 X (m): X (m): 424.4 483.4 497.6 X (m): 225.7 X (m): 210.6 X (m): 394.2 X (m): 394.2 X (m): 394.2 X (m): 396.3 396.3 X (m): 356 389.5 403 X (m): 23.5	480.6 534.5 528.3 260,121.2 111.5 260,120.8 260,122.2 109.0 260,313.2 426.9 506.6 499.1 260,170.4 226.9 260,171.2 212.5 260,158.4 425.3 395.4 260,169.4 259,905.8 196.4 484.1 260,162.9 259,540.6 97.6 375.5 432.2 395.8 409.3 259,755.4 101.5 200.9	1.8 11.8 1 Y (m): 21.6 2.8 Y (m): Y (m): 7.5 23.2 1.5 Y (m): 1.2 Y (m): 1.9 Y (m): 31.1 1.2 Y (m): Y (m): 6 13.8 Y (m): Y (m): 6 30.1 19.5 42.65 6.3 6.3 Y (m): 78 8.6	1.2 7.9 0.7 2,903,713.9 21.4 2.8 2,903,713.7 2,903,713.6 7.5 2,901,238.3 1.6 15.1 1.0 2,903,579.9 1.2 2,903,580.3 1.9 2,901,221.4 21.5 0.8 2,903,579.5 2,901,240.8 3.1 7.3 2,903,462.0 2,901,219.1 19.9 13.5 2.99 4.3 4.3 2,901,209.6 43.7 4.8	1.48 0.21 0.33 Z (m): 0.19 Z (m): 0.09 Z (m): 0.03 0.50 Z (m): 0.29 Z (m): 0.29 Z (m): 0.29 Z (m): 0.16 Z (m): Z (m): 0.46 Z (m): 0.16 Z (m): 0.16 Z (m): 0.16 Z (m): 0.17 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	30.3 9.4 32.9 1456.6 20.9 83.6 1456.7 1456.8 3.0 1825.8 50.3 19.3 88.8 1457.1 11.3 1457.0 1457	0.09 0.26 0.88 Dip (deg): 0.33 1.56 Dip (deg): 0.05 Dip (deg): 0.02 0.08 0.10 Dip (deg): 0.07 0.50 Dip (deg): 0.14 0.18 Dip (deg): 0.07 0.01 0.18 Dip (deg): 0.07 0.01 0.40 0.99 0.81 Dip (deg): 0.01	0.92 3.42 47 0.64 3.11 47 0.36 60 0.027 0.29 47 0.01 55 0.34 0.98 47 65 0.14 0.58 47 63 0.33 0.06 1.55 84 47 63 0.33	0.03 0.05 Az. (deg): 0.02 0.10 Az. (deg): 0.01 Az. (deg): 0.01 0.01 Az. (deg): 0.01 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.00 Az. (deg): 0.01 0.03 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.20 Az. (deg): 0.01 0.21 0.01 0.01 0.01 0.01 0.01 0.01	0.98 3.02 0 0.98 4.04 330 0.35 0 0.76 2.04 0 0.76 3.74 335 0 0.61 1.09 0 0.40 0.27 2.05 3.91 6.25 0 0.43 0.73	Area: Area: Area: Area: Area: Area: Area: Area: Area:	San Francisco San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe San Francisco Guadalupe	Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company:	CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA CRISCORA

^{*}Coordinates in NAD 27 Zone 13; Az. – Azimuth; deg. – degrees; Length – length of downhole interval; True width – true width of structure accounting for hole intercepting angle.

^{*}Aueq = Au g/t + 0.014*Ag g/t + 0.532*Zn% + 0.379*Pb% + 1.525*Cu% (Assumes 100% recoveries and metal prices: \$1700/oz Au, \$23.61/oz Ag, \$1.32/lb Zn, \$0.94/lb Pb and \$3.78/lb Cu

10.3 General Drilling Protocol

No active exploration drilling was occurring when the Qualified Person for this chapter was visiting the project site. The Qualified Person observed the core shed and core logging area and the collars of holes: ACD17-77, ACD18-86, ACD18-95, ACD19-96, ACD19-122, ACD20-170. After drilling, collars are capped with a cement slab and PVC pipe down the hole.

Holes are drilled by a drilling contractor. Core is placed into plastic core trays and transported to the core logging area. TCP1 personnel review the core lengths in the core boxes and insure that first and last core fractures between consecutive boxes match. Errors in core length and continuity are addressed with drillers immediately.

There are no known drilling, sampling or recovery issues that would materially impact the accuracy and reliability of the results.

Holes are surveyed by down hole reflex. Surveys start at 15 meters downhole and are taken every 50 meters after that.

11 Sample Preparation, Analyses, and Security

Sample preparation that is being performed at site prior to the sample being sent to the lab was observed by the author on the site visit. Some of the information on drilling completed before 2018 is based on what was gleaned from assay certificates and QA/QC data. Charlie Ronkos is directing the current drilling program and has been associated with the project since 2010.

11.1 Assay Laboratory

All ALS labs used for the Cristina project are independent commercial labs and are certified in accordance with ISO 17025:2017. All samples over the life of the project have been sent to ALS in Hermosillo. Prior to 2022, sample preparation was performed at the ALS laboratory in Hermosillo. In 2022 sample preparation was performed at either the ALS lab in Hermosillo or the ALS lab in Guadalajara at the discretion of ALS. The resulting pulps were sent to ALS in Vancouver for analytical procedures.

11.1.1 Sample Preparation

The steps performed to prepare samples received by the lab are listed in table 11.1.

Table 11.1: Sample Preparation

	Sample Preparation Steps
I	1. Dry if excessively wet
l	2. Weigh Sample
l	3. Fine Crushing 70% passing 2 mm
	4. Split Sample in Riffle Splitter to 250g
I	5. Pulverize Sample to 85% passing 75 μm

11.1.2 Analytical Procedures

All of the samples that were assayed, were assayed for gold, by fire assay on a 30g sample. Before 2018, assays were finished by atomic adsorption (Au-AA23) and beginning in 2018 and later, assays were completed with a gravimetric finish which also included a gravimetric finish silver assay (ME-GRA21). Analytical procedure "Au-AA23" has an upper limit for gold assays of 10 g/t; samples that exceeded this limit were re-assayed for gold using a gravimetric finish (Au-GRA21). A summary of gold assay methods is provided in Table 11.2.

Table 11.2: Summary of Gold Assays

Test	Metals Assayed	Au Upper Limit	# Assays	Holes
Au-AA23	Au	10 g/t	18,089	CRD10-01 - ACD17-82
ME-GRA21	Au, Ag	10,000 g/t	8,711	CRD10-09 and ACD17-64 - ACD22-220

All of the samples that were assayed for gold were also assayed by four acid digestion with ICP multi element finish. Some of the samples were assayed for 48 elements using ICP(ME-MS61); the majority were assayed for 33 elements using ICP(ME-ICP61). When the upper thresholds for Ag, Zn, Pb, or Cu were exceeded, an additional four acid digestion with an ICP finish was performed on a 0.4 gram sample. A summary of the ICP multi element assay methods is provided in Table 11.3.

Table 11.3: Summary of ICP Analyses

Test	Sample weight (g)	# Elements	# Assays			ŀ	Holes			
ME-MS61	0.25	48	3,671	CRD10-XX, C	RD14-48	- CRD14-5	0, CRD1	.5-53, ACD:	17-74 - <i>F</i>	ACD17-82
ME-ICP61	0.50	33	23,129	All others						
Upper Thre	shold		Ag:	100ppm	Pb:	1.0%	Zn:	1.0%	Cu:	1.0%

11.2 Sample Preparation Methods and QA/QC insertions

Core handling and data taken on site has been performed by the same employees since the first drill program in 2010. They were trained in 2010 and have been continuously working on the project. The main difference between drilling by different property owners was the percentage of the drill hole that was assayed. During 2022, Criscora assayed additional intervals from the 2017-2020 drilling that were un-assayed previously. A summary of the drilling and percentage of drillhole sampled (as of the end of 2022) is provided in Table 11.4.

Table 11.4: Summary of Drilling and Percentage of Drillhole assayed

Company	# Holes	Sequence	Meters	# Intervals	# Au Assays Intervals	Meters with Assays	Percent of Meters with Assay
Goldcorp	61	CRD10-01 to CRD15-60	22,430.20	15,238	15,198	22,039.15	98%
Oro Premier	22	ACD16-61 to ACD17-82	7,169.00	4,576	3,113	4,629.50	65%
Criscora	140	ACD18-83 to ACD22-220	40,587.40	9,011	8,489	16,132.69	40%
Total	223		70,186.60	28,825	26,800	42,801.34	61%

There was also variability in the QA/QC insertions between different property owners. A summary of the QA/QC insertions is provided in Table 11.5. This table shows the QA/QC insertions during the initial assaying of the holes and does not reflect the QA/QC insertions during the 2022 assaying of previously un-assayed intervals in earlier holes.

Table 11.5: Summary of QA/QC Types by Property Owner

		Number of Holes by QAQC Type										
							Blanks,					
Company	Hole Seguence	No	Blanks	Duplicates	Blanks &	Blanks &	Duplicates &					
Company	Hole Sequence	QAQC	only	only	Duplicates	Standards	Standards					
Goldcorp	CRD10-01 to CRD15-60	-	32	-	-	-	29					
Oro Premier	ACD16-61 to ACD17-82	-	6	-	16	-	-					
Criscora	ACD18-83 to ACD20-192	20	18	17	57	-	-					
Criscora	ACD22-93 to ACD22-220	-	-	-	-	3	25					
Total		20	56	17	73	3	54					

Some of the drill campaigns did not have adequate QA/QC data which was addressed with a check assay program in Fall of 2021. This check assay program is described in Section 11.3.

All of the core and coarse rejects are stored at site, in either a core shed or covered core storage area.

11.2.1 Drilling by TCP1 Corporation

Drilling of 112 holes was completed by TCP1 Corporation between 2018 and 2020. About 12% of the total length of the drilling during this time period was assayed. Criscora drilled an additional 28 holes in 2022 and assayed 89% of the length of the holes drilled in 2022. In 2022 Criscora assayed additional previously un-assayed intervals in the pre-2022 Criscora and Oro Premier drilling. This increased the percentage assayed of Oro Premier holes from 49% of the length to 65%. The percentage assayed of the 2018 to 2020 Criscora drilling increased from 12% to 26% of length drilled as a result of the additional assays performed in 2022.

When the geologists received the core from the drillers, they checked the length of core in the box to ensure that it matched the depth of drilling reported by the drillers. They also checked the last core fracture and first core fracture in successive core boxes to ensure that the box was oriented correctly when the core was placed in it. Problems identified by the geologists were resolved with the drillers immediately.

When logging core, the geologists recorded: contacts, alteration, mineralization and RQD data. Density measurements were taken approximately every ten meters. Assay intervals in the drill hole were chosen by selecting lengths of core with uniform mineralized zones. They preferred to maintain an assay interval of at least 1 meter.

Density measurements are taken by drying the piece of core selected, by placing it on top of a wood burning stove. This piece of core is coated in clear lacquer and weighed on an electric scale to record the mass of the core. The core is then placed in a large graduated cylinder that has been filled with water. The displacement of the water is recorded as the volume of the piece of core.

During the drilling campaign between 2018 and 2020, only the lengths of the drill holes that visually looked like they could potentially assay at underground mining head grades were selected for assay sampling. Selection was usually based on quartz veining with visible sphalerite and galena. Intervals that were selected for assay were labeled and assigned a sample number. These intervals were sawn in half with a diamond saw and half the core was placed in a plastic sample bag that was labeled with the sample number. Sample bags of half core were stored at the core cutting shed until they were picked up and transferred in a pickup truck to Culiacan by Criscora staff. In Culiacan, they are placed on a shipping pallet and are shipped to the ALS laboratory in Hermosillo.

During 2018-2020 drilling, samples of barren rhyolite sourced from the property were inserted into the sample stream on average every 24 samples as blanks. During 2022 drilling and assaying previously un-assayed intervals, blanks were inserted into the sample stream on average every 45 samples.

During 2018 – 2020 drilling, Intervals with a gold grade above 1.0 g/t were re-assayed for gold and silver by ordering a duplicate assay of the coarse rejects that the lab had on hand. This resulted in a duplicate gold and silver assay about 1 in every 14 assays.

During 2022 drilling and assaying of previously un-assayed intervals, duplicates of coarse rejects that the lab had on hand were ordered on average every 39 samples. Samples for duplicate assays were selected by Criscora staff based on received assay results.

No standards were inserted during the time period 2018-2020.

Standards were inserted during 2022 drilling and assaying of previously un-assayed intervals at a rate of 1 in every 54 samples. The expected value and two standard deviations(2 STD) of the standard that was inserted is provided in Table 11.6. A summary of the QAQC insertions during Criscora drilling is in Table 11.7.

Table 11.6 Accepted Values of Standard inserted during 2022

	Gold g/t		Silver g/t		Zir	nc %	Le	ad %	Copper %	
Standard	Avg	2 STD	Avg 2 STD		Avg	2 STD	Avg	2 STD	Avg	2 STD
OREAS 620	0.685	0.042	40.0 6.2		3.15	.19	.77	0.44	0.173	0.08

Table 11.7: Summary of QA/QC Insertions during Criscora Drilling

	% hole	Rates of	Rates of Insertion Assays/Insert			
Hole Sequence	# Holes	length assayed	Blanks	Standards	Duplicates	
ACD18-83 to ACD20-192	121	12%	24	N/A	14	
ACD22-193 to ACD22-220	28	89%	45	54	39	
2022 Addtl. Assays ACD18-83 to ACD20-192	91	16%	45	54	39	

11.2.2 Drilling by Oro Premier

Drilling of 22 holes was completed by Oro Premier between 2016 and 2017. About 59% of the total length of the drilling during this time period was assayed. No standards were inserted into the sample stream in this time period. Blanks were inserted at a rate of 1 in 25. In 2022 Criscora assayed previously un-assayed intervals from the 2017 Oro Premier drilling. This increased the percentage assayed of Oro Premier holes from 59% of the length to 65%.

During drilling in 2016 and 2017, intervals with a gold grade above 1.0 g/t were re-assayed for gold and silver by ordering a duplicate assay of the coarse rejects that the lab had on hand. This resulted in a duplicate gold and silver assay about 1 in every 43 assays. A summary of the QAQC insertions during 2016-2017 is provided in Table 11.8.

During 2022 assaying of previously un-assayed intervals, duplicates of coarse rejects that the lab had on hand were ordered on average every 39 samples. Samples for duplicate assays were selected by Criscora staff based on received assay results.

Table 11.8. Summary of QA/QC insertions during Oro Premier Drilling	Table 11.8: Summar	y of QA/QC Insertions during Oro Pr	emier Drilling
---	--------------------	-------------------------------------	----------------

		% hole	Rates of Insertion Assays/Insertion				
Hole Sequence	# Holes	length assayed	Blanks	Standards	Duplicates		
ACD16-61 to ACD16-64	3	99%	25	N/A	93		
ACD17-64 to ACD17-82	19	47%	25	N/A	31		
2022 Addtl. Assays ACD17-64 to ACD17-82	13	7%	45	54	39		

11.2.3 Drilling by Goldcorp

Drilling of 61 holes was completed by Goldcorp between 2010 and 2015. About 98% of the total length of the drilling during this time period was assayed. QA/QC insertions occurred at a rate of 1 in 25 samples.

Blanks were inserted for all holes drilled. Insertion rates for holes CRD10-01 through CRD11-15 and CRD12-44 through CRD15-60 were 1 blank for every 25 samples.

Standards and duplicates were only inserted in holes CRD11-16 through CRD12-43. Duplicates were inserted at a rate of 1 duplicate every 100 assays and Standards were inserted at a rate of 1 standard every 50 assays. Coarse duplicates were prepared halving the half core and generating two samples of quartered core. Two standards were inserted; Standard CDN-GS-5G for gold and silver and Standard CDN-ME-7 for gold, silver, lead, zinc and copper. The accepted values and two standard deviations of the standards are provided in Table 11.9. During this drilling period, blanks were inserted at a rate of 1 every 100 assay which resulted in a QA/QC insertion every 25 samples.

Table 11.9: Accepted Values of Standards

	Gold g/t		Silver g/t		Zir	nc %	Lea	ad %	Copper %		
Standard	Avg	2 STD	Avg	2 STD	Avg	2 STD	Avg	2 STD	Avg	2 STD	
CDN-GS-5G	4.77	0.40	101.8	7.0							
CDN-ME-7	0.219	0.024	150.7	8.7	4.84	0.17	4.95	0.30	0.227	0.016	

A summary of the QAQC insertions during 2010-2015 is provided in Table 11.10.

Table 11.10: Summary of QA/QC Insertions during Goldcorp Drilling

		% hole	Rates of	ays/Insertion	
Hole Sequence	# Holes	length assayed	Blanks	Standards	Duplicates
CRD10-01 to CRD11-5	15	99%	25	N/A	N/A
CRD11-16 to CRD11-43	29	97%	100	50	100
CRD11-44 to CRD15-60	17	99%	25	N/A	N/A

11.3 Check Assay Program

During the fall of 2021, TCP1 ran a check assay program to bring the confidence of the drillhole data up to a level suitable for Resource estimation. These check assays addressed the issues with the lack of standard insertions and consistent duplicate insertions during a majority of the drilling at the Cristina project. Check assays were run on pulps, coarse rejects and quarter core. A summary of the type of check assays by year is provided in Table 11.11. Check assays were completed by SGS laboratory in Durango, Mexico an independent commercial lab certified ISO 17025:2017. Gold and silver were assayed by fire assay with a gravimetric finish. A four acid digestion with ICP finish was also run on 32 elements.

	· · · · · ·		3347 · 7PC	5 0, .c
Year	Pulp	Coarse	Quarter	Total
2010			34	34
2011	9		9	18
2012	19		30	49
2014	24			24
2015	25		2	27
2016		1	6	7
2017	4	22	26	52
2018	15	1		16
2019	57	5		62
2020	60	2		62
Total	213	31	107	351

Table 11.11: Summary of Check Assay Types by Year of Drilling

11.4 Additional Assays in Previous Drilling

During 2017-2020, only drill hole intervals were assayed which the logging geologists visually identified as potentially being high enough grade to be considered economical in an underground production scenario. In 2022, Criscora staff assayed additional intervals from 2017-2020 that were previously un-assayed. Previously un-assayed intervals that were assayed in 2022 were selected based on their proximity to assayed mineralized intervals. The length of additional assays in 2022 by drill hole are provided in Table 11.12.

Table 11.12 Additional Length of Drill holes Assayed in 2022

Hole	Length(m)	Hole	Length(m)	Hole	Length(m)	Hole	Length(m)	Hole	Length(m)
ACD17-67	29.4	ACD18-93	31	ACD19-118	7.35	ACD20-141	31.93	ACD20-169	19
ACD17-68	19.2	ACD18-95	51.5	ACD19-119	32.9	ACD20-142	41.69	ACD20-170	298.95
ACD17-69	16.8	ACD19-96	63.95	ACD19-120	75.3	ACD20-143	72.55	ACD20-171	66.55
ACD17-70	25.5	ACD19-97	17.15	ACD19-121	71.15	ACD20-144	48.08	ACD20-172	21.4
ACD17-71	7.5	ACD19-98	46.8	ACD19-122	317.55	ACD20-145	29.9	ACD20-173	232.2
ACD17-72	30.85	ACD19-99	18.3	ACD19-123	33.75	ACD20-146	64.65	ACD20-174	42.7
ACD17-73	43.5	ACD19-100	6.7	ACD19-125	32.2	ACD20-147	34.25	ACD20-175	63.45
ACD17-74	7.85	ACD19-101	33.6	ACD19-127	30.05	ACD20-148	41.55	ACD20-176	30.65
ACD17-75	31	ACD19-102	72.65	ACD19-128	57	ACD20-149	63.75	ACD20-177	51.4
ACD17-76	21.85	ACD19-103	8.05	ACD19-129	35.05	ACD20-154	59.5	ACD20-178	12.25
ACD17-77	21	ACD19-104	47.45	ACD19-130	6.35	ACD20-159	28.3	ACD20-179	69.05
ACD17-78	9	ACD19-106	25.5	ACD19-131	12.5	ACD20-159A	16.62	ACD20-180	28.8
ACD17-79	16.5	ACD19-107	48.65	ACD19-132	36.8	ACD20-160	17.6	ACD20-183	44.25
ACD18-83	17.1	ACD19-108	34.8	ACD19-133	24.9	ACD20-161	29.15	ACD20-186	38.6
ACD18-84	51.05	ACD19-109	30.05	ACD19-134	13.45	ACD20-162	0	ACD20-187	8.2
ACD18-85	33.35	ACD19-110	32.9	ACD19-135	25.95	ACD20-162A	31.1	ACD20-188	34.75
ACD18-86	12.65	ACD19-111	19.05	ACD19-136	4.4	ACD20-164	59.85	ACD20-189	26.3
ACD18-87	35.8	ACD19-112	174.8	ACD19-137	65.85	ACD20-165	19.1	ACD20-190	64.9
ACD18-89	16.8	ACD19-113	27.6	ACD19-138	56.25	ACD20-166	12.5	ACD20-191	19.85
ACD18-90	85.15	ACD19-115	12.35	ACD20-139	50.6	ACD20-167	96.65	ACD20-192	22.6
ACD18-91	5.8	ACD19-117	31.5	ACD20-140	36.08	ACD20-168	30.5		

11.5 Opinion of Qualified Person

Insertion rates of QA/QC standard and duplicate samples were increased at the Cristina project for the 2022 drilling. Duplicates should be inserted at a consistent rate instead of only re-assaying coarse rejects above a cutoff grade. This will provide an additional check on the assay lab by inserting a sample with an unknown grade, instead of ordering a reassay of a sample already known to the lab.

TCP1 should consider reverting back to atomic adsorption for the finish of the gold fire assays. According to ALS, as the sample grade approaches the detection limit of the assay method, they expect the precision variance of the assay result to become a higher proportion of the sample grade. Theoretically, the atomic adsorption method should be less variable at lower sample grades because the atomic adsorption finish has a detection limit 10 to 20 times lower than the gravimetric finish. Historically, the sample grades have infrequently exceeded the upper detection limit of the atomic adsorption finish which has a lower upper detection limit than the gravimetric finish.

TCP1 should select a second standard for insertion so that the assay lab doesn't "expect" a standard of certain grade.

Although standards and duplicates were not inserted on a regular basis during a significant portion of the Cristina drilling, the qualified person (Jacob Richey of IMC) holds the opinion that the additional check assay work completed by TCP1 in Fall of 2021 improved the confidence in the sampling and assaying methods to a level adequate for the determination of mineral resources.

12 Data Verification

IMC utilized QAQC available to confirm that the database was applicable for determination of Mineral Resources. The following items were addressed during this analysis.

- 1) Data Entry: Evaluated by checking the TCP1 provided electronic data base against original laboratory assay certificates.
- 2) Cross Contamination: Evaluated by analysis of blanks inserted into the assay stream.
- 3) Precision: Evaluated by analysis of the duplicate assays of samples.
- 4) Accuracy: Evaluated by analysis of standard samples inserted into the assay stream.
- 5) Precision and Accuracy: Evaluated by analysis of original assays against check assays at second assay laboratory.

As a result of the work presented in this section, Jacob Richey (Qualified Person) finds that the database is sufficiently accurate and precise for use in the estimation of Mineral Resources.

12.1 Certificate Check

Certificate checks against the drill hole database were completed on initial assays from drill holes CRD15-54 through CRD15-60 and drill holes ACD18-83 through ACD20-160. All of the assay intervals were checked for 2022 drilling and 2022 assaying of previously unassyed intervals. In total, 9,588 intervals were checked for Au, Ag, Zn, Pb, and Cu. About 34% of the assays in the drill hole database were checked against certificates and a negligible number of differences were found.

12.1.1 Certificate Checks on Holes CRD15-54 through CRD15-60

All 2,328 intervals in holes CRD15-54 through CRD15-60 were checked against assay certificates and no differences were found between the certificates and the drill holes database for Au, Ag, Zn, Pb and Cu.

12.1.2 Certificate Checks on Holes ACD18-83 through ACD20-160

The assays that were performed at the time of drilling for seventy-nine drillholes between ACD18-83 to ACD20-160 were used for certificate checks of gold, silver, copper, lead and zinc. IMC did not have certificate data for eighteen of these drillholes. Of the 1,499 assayed intervals, certificate data was found for 1,340 intervals (89% of the intervals). A difference in gold values was found in a single interval in hole ACD19-123. A difference in Ag, Zn, Pb, and Cu was found in a single interval in hole ACD19-98.

12.1.3 Certificate Checks for assays in 2022.

The drill hole database was checked against the electronic certificate values for all assays performed in 2022. In total, 5,920 intervals were checked. 16 intervals in drill hole ACD22-205 had similar values to the certificate but not identical. Most likely a revised certificate

was issued and the revision did not make it to these intervals. Two consecutive intervals in additional assays completed during 2022 on drill hole ACD19-122 appear to have had the gold assay values swapped.

12.2 Blanks for Gold and Silver

Blanks were inserted during all drilling at the Cristina project. Figure 12.1 provides a plot of the gold assay values for the blanks in sequential order over time. The assay method for gold changed between 2017 and 2018 causing the detection limit to increase which is why there is an increase in blank gold grades starting in 2018. Figure 12.2 provides a plot of the silver assay values for the blanks in sequential order over time.

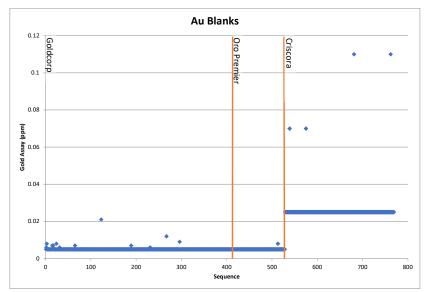


Figure 12.1: Blank Gold Assays

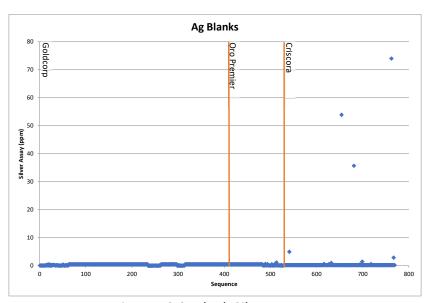


Figure 12.2: Blank Silver Assays

Goldcorp Blanks (CRD01-01 through CRD15-60)

There were 411 blanks inserted into the assay stream between 2010 and 2015. At least one blank was inserted into the sample stream of each hole.

There were 12 blank insertions with a gold assay above 0.005 ppm. Two of those were above 0.009 ppm; one was 0.012 ppm Au and the other was 0.012 ppm Au.

There was 1 blank insertion with a silver assay above 0.5 ppm.

Oro premier Blanks (ACD16-61 through ACD17-82)

There were 117 blanks inserted into the assay stream between 2016 and 2017. At least one blank was inserted into the sample stream of each hole.

There was 1 blank insertion with a gold assay above 0.005 ppm.

There were 5 blank insertions with a silver assay above 0.5 ppm; the greatest of these being 1.19 ppm.

Criscora Blanks (ACD18-83 through ACD20-192)

There were 111 blanks inserted into the assay stream between 2018 and 2020. Blanks were inserted at a rate of 1 in every 25 assay samples. Intervals in the holes were selectively assayed; some holes had very few assays and sometimes no blanks were inserted into the assay stream for holes with a small number of assays. This is because multiple holes could fit in a single assay "run" as only a few samples from each hole were submitted. At least one blank was inserted for 75 out of the 112 (67%) holes drilled in this time period.

There were 2 blank insertions with a gold assay above 0.05 ppm. Both of these assays were 0.07 ppm Au.

There were 4 blank insertions with a silver assay above 0.5 ppm; the greatest of these being 5 ppm.

Criscora Blanks (ACD22-193 through ACD22-220 and additional assays from previously unassayed intervals)

There were 130 blanks inserted into the assay stream in 2022. Blanks were inserted at a rate of 1 in every 45 assay samples. At least one blank was inserted into the sample stream of each hole.

There were 2 blank insertions with a gold assay above 0.05 ppm. Both of these assays were 0.11 ppm Au.

There were 7 blank insertions with a silver assay above 0.5 ppm; three of them were above 30 grams, the other four were below 3 grams. One of the blanks below 3 grams was identified by the lab to be a a sample swap on the assay sheet and corrected those assays.

They retested assays on either side of the assays that were swapped and confirmed only the identified swaps were affected and no others. The three blanks that assayed above 30 grams had a re-assay of coarse duplicates returning similar silver assay grades. Contamination must have occurred in the lab sample splitting step or in the blank insertion at site.

12.3 Duplicates

During Goldcorp drilling 2010-2015, 73 duplicates were only inserted for drill holes CRD11-16 through CRD12-43. These coarse duplicates were prepared by halving the half core and submitting two samples of quartered core. During Oro Premier drilling 2016-2017 and Criscora drilling 2018-2020, duplicates were ordered for coarse rejects remaining at the laboratory for samples assaying greater than 1.0 g/t Au. 73 duplicate assays were taken during Oro Premier drilling and 189 duplicate assays were taken during 2018-2020 Criscora dilling. During Criscora 2022 drilling and assaying of previously un-assayed intervals, 151 duplicates were ordered for sample coarse rejects remaining at the laboratory. Samples for duplicate assay were selected by Criscora staff approximately every 24 samples usually based on the grade of the original sample. During the first part of 2022 through May, 22 of the 36 duplicate samples were selected because the original assayed near 1.0 g/t or higher. After May 2022, the remaining 129 duplicate samples were selected generally based on their location in the sample stream, but still with a preferential selection of "higher grade" original assays.

The results of comparing the original assays with the duplicate assays are provided in Table 12.1. A description of the hypothesis tests is provided in Section 12.6. When reviewing Oro Premier duplicates and Criscora 2018-2020 duplicates, the duplicate assays that sampled below 1.0 g/t Au were not considered in the analysis. This is because selecting only original samples with assays above 1.0 g/t Au causes a skew in the distribution compared to the duplicate assays if duplicate assays are able to be less than 1.0 g/t Au. For the same reason, Criscora 2022 duplicates selected prior to May 2022 were not considered in the analysis.

One issue identified in the duplicate assays is during 2018-2020 drilling, there is a high bias in the original silver assay when compared with the duplicate silver assay. An x-y plot of the silver duplicate assays during 2018 - 2020 drilling is provided in Figure 12.3.

Another issue identified is the high bias of original to gold duplicate assays in 2022 drilling and assaying of previously un-assayed intervals. This bias is believed to be a result of a large proportion of the samples selected for duplicate assay in 2022 being on the right tail of the distribution of gold grades. An x-y plot of the duplicate assays during 2022 is provided in Figure 12.4. The orange markers are duplicates from May 2022 and earlier, the blue markers are duplicates after May 2022.

Table 12.1: Com	parison of	Original Assa	vs and Du	plicate Assavs

		Original		Duplicate		Test to Compare Means		Test of Paired Data		Probability this data		
									Occurred Given Null			
		#	Mean	Variance	Mean	Variance	Η ₀ : μ ₁ =μ ₂		Η ₀ : μ ₁₋₂ =0		Hypothesis	
Company	Metal	Pairs	ppm		ppm		T-stat	d.f.	T-stat	d.f.	H ₀ : μ ₁ =μ ₂	H ₀ : μ ₁₋₂ =0
Goldcorp	Au	73	0.05	0.02	0.06	0.01	0.26	142	0.77	72	0.795	0.444
	Ag	73	2.14	18.98	2.36	32.78	0.25	134	1.02	72	0.801	0.311
Oro	Au	58*	2.28	3.26	2.68	9.23	0.86	93	1.44	57	0.391	0.155
Premier	Ag	58*	125.78	22,238.23	129.76	23,810.68	0.14	114	0.69	57	0.888	0.495
Criscora	Au	128*	2.71	15.03	2.63	12.86	0.18	253	0.92	127	0.856	0.360
'18-'20	Ag	128*	102.00	27,950.04	94.35	23,009.86	0.38	252	3.85	127	0.702	0.000
Criscora	Au	115**	0.38	0.99	0.33	0.83	0.43	226	2.12	114	0.671	0.036
2022	Ag	115**	20.62	1,210.07	19.94	1,047.94	0.15	227	0.95	114	0.879	0.347

^{*}Only duplicate pairs with duplicate Au assay > 1.0 g/t were considered in the analysis

^{*}Only duplicate pairs selected after May 2022 were considered in the analysis

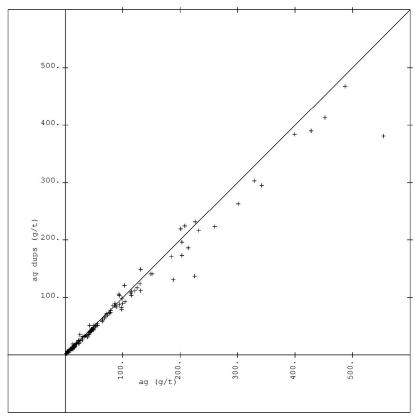


Figure 12.3 X-Y Plot of Original Silver(X) Grade and Duplicate Silver(Y) Grade in 2018-2020 Drilling

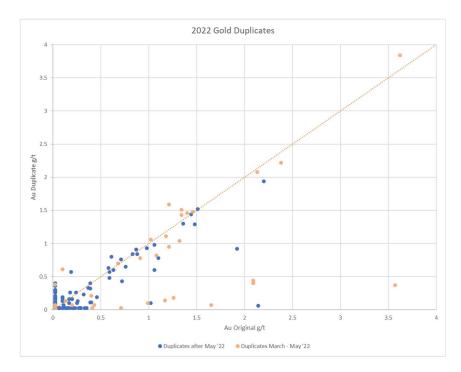


Figure 12.4: Plot of Original Gold(X) Grade and Duplicate Gold(Y) Grade in 2022 Assays (Orange-May 2022 and Earlier, Blue-After May 2022)

12.4 Standards

Standards were inserted in holes CRD11-16 through CRD12-43 (about 15% of the holes drilled from 2010 to 2020). Two standards were inserted every 100 assays (resulting in a standard every 50 assays); a gold/silver standard (CDN-GS-5G) and a multi-element standard (CDN-ME-7). The accepted values of the Goldcorp standards were provided in Table 11.9. Standards were not again inserted into the assay streams until the 2022 drill campaign and assaying of previously un-assayed intervals when a single multi-element standard (OREAS-620) was inserted on average every 45 assays. The accepted values of the standards were provided in Table 11.6.

Standard CDN-G5-5G was inserted 72 times. Six gold assays (about 8%) fell outside of the accepted values for the standard while 9 silver assays (about 12.5%) fell outside of the accepted values. All of the gold assays outside of the accepted values assayed at a gold grade greater than the standard; all of the silver assays outside of the accepted values assayed at a silver grade below the standard. Figure 12.5 shows the gold assay values plotted against the accepted values of standard CDN-GS-5G. Figure 12.6 shows the silver assay values plotted against the accepted values of standard CDN-GS-5G.

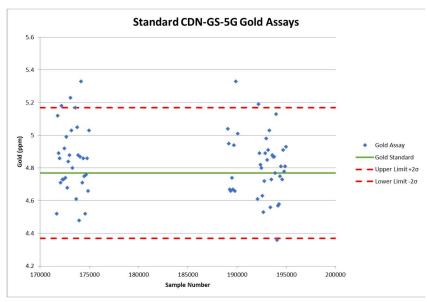


Figure 12.5: Gold Assay values of Standard CDN-GS-5G

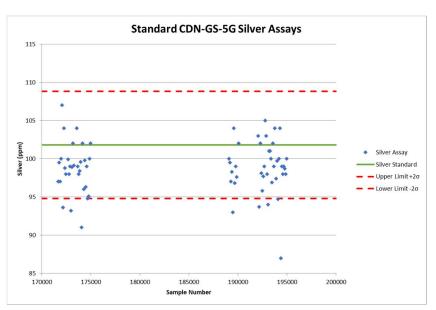


Figure 12.6: Silver Assay values of Standard CDN-GS-5G

Standard CDN-ME-7 was inserted 75 times. This standard has certified values for gold, silver, lead, zinc and copper. The number of standard assays outside of the accepted values are provided in Table 12.2. Graphical representations are provided in Figure 12.7 through Figure 12.10 of the assay lab's performance over time against the Standard.

Table 12.2: Assays outside of the Accepted Values for Standard CDN-ME-7

Assay	# Assays	% Assays
	Outside	Outside
Gold	9	12%
Silver	11	15%
Zinc	14	19%

Lead	1	1%

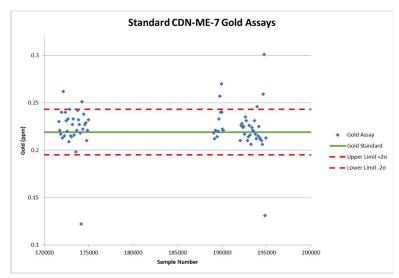


Figure 12.7: Gold Assay values of Standard CDN-ME-7

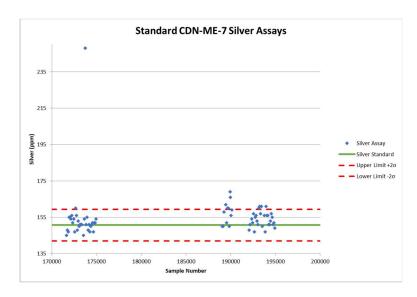


Figure 12.8: Silver Assay values of Standard CDN-ME-7

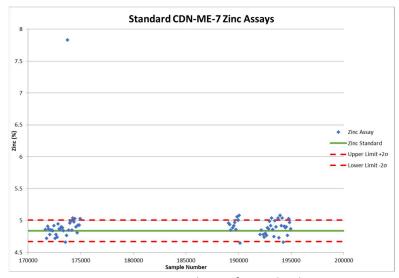


Figure 12.9: Zinc Assay values of Standard CDN-ME-7

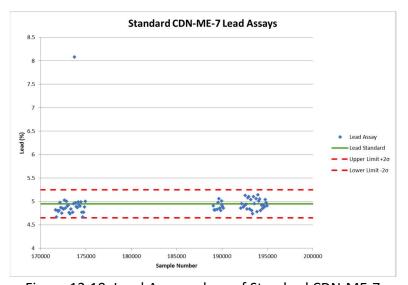


Figure 12.10: Lead Assay values of Standard CDN-ME-7

Standard OREAS 620 was inserted 110 times into the assay stream of the 2022 drilling and assaying of previously un-assayed intervals. This standard has certified values for gold, silver, lead, zinc and copper. Only 105 assay results were received for the fire assay gold grades. The lab reported the other six standards as insufficient sample for assay. The remaining metals were assayed for all standard insertions as they were tested with an ICP method requiring a smaller sample mass. The number of standard assays outside of the accepted values are provided in Table 12.3. Graphical representations are provided in Figures 12.11 through Figure 12.15 of the assay lab's performance over time against the Standard.

The gold assays did not report well within the two standard deviation limits of the accepted gold value. There were several reasons for this. The distribution of the accepted gold value for the standard is comprised of atomic adsorption finish or ICP finish assay results while the assays ordered from ALS chemex were gravimetric finish assays. ALS Chemex reports that they have a precision expectation of 6% of the accepted value when assaying reference material. If the accepted value is less than 20x the detection limit of the method (detection limit of gravimetric assay is 0.05 ppm Au), they propose an alternative equation for estimating the limits of precision. The ALS equation for limits of precision based on assay method limit of detection and sample expected value is provided:

Limits of Precision from ALS Chemex for Sample Expected Value 0.685 ppm =

$$0.685ppm_{exp.\ val.} \pm \left(6\%_{prec.exp.} * 0.685ppm_{exp.\ val.} + 0.05ppm_{det.\ limit}\right) + \left(1 - \frac{0.685ppm_{exp.\ val.}}{0.05ppm_{det.\ limit} * 20}\right) * 0.05ppm_{det.\ limit} = \\ 0.685ppm_{exp.\ val.} \pm 0.10685ppm = 0.57815ppm - 0.79185ppm$$

The last 4 gold standards that were outside of limits in the Figure 12.10 (shown in green) were reinvestigated by the assay lab. The lab rectified the issue by re-assaying the standard pulps and coarse rejects of five samples either side of the original standard sample. They obtained the correct assay value for the standard on re-assay and obtained similar values for the five samples either side of the standard. The standard that initially assayed 1.5 ppm did not have enough material remaining for re-assay, but the re-assay of the five samples either side of the standard were similar to each other.

Table 12.3: Assays outside of the Accepted Values for Standard OREAS 620

	,			
	# Assays	% Assays	Outside ALS	% Assays
Assay	Outside 2STD	Outside 2STD	limit of prec.	Outside
Gold	48	46%	11	10%
Silver	0	0%		
Zinc	0	0%		
Lead	2	2%		
Copper	3	3%		

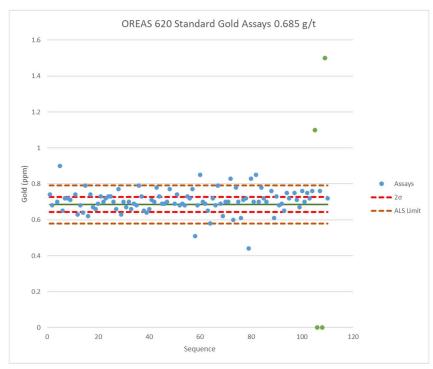


Figure 12.11 Gold Assay values of Standard OREAS 620

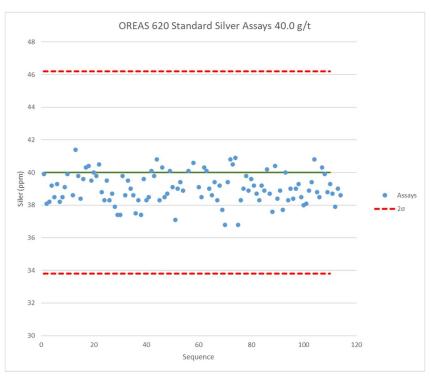


Figure 12.12 Silver Assay values of Standard OREAS 620

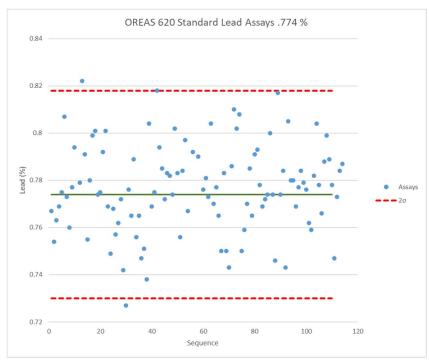


Figure 12.13 Lead Assay values of Standard OREAS 620

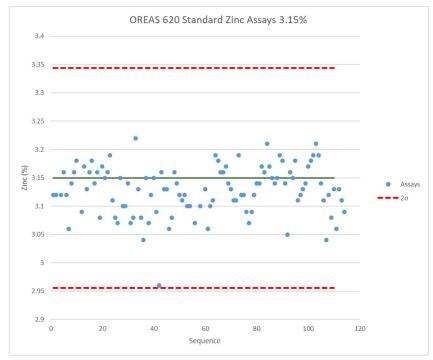


Figure 12.14 Zinc Assay values of Standard OREAS 620

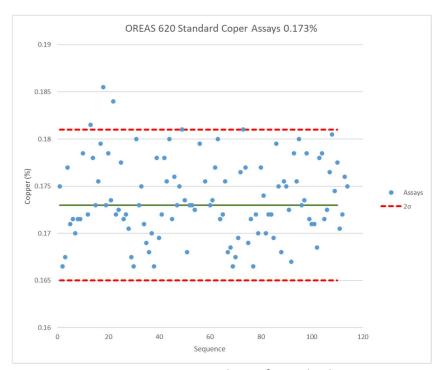


Figure 12.15 Copper Assay values of Standard OREAS 620

12.5 Additional Confirmation of 2022 Assay Program

In response to the failed gold standards and issues with duplicate gold assays observed in the 2022 assay program, additional analysis was performed on the 2022 gold assay results. Assay intervals from the 28 2022 drill holes were paired with assay intervals from 2010 through 2016 drilling. Only intervals within the "high grade" and "low grade" volumes were considered that were within 100 meters of each other. This analysis provided a check on using gravimetric vs. AA finish and also on the lab's performance during 2022 compared to earlier years. The results of comparing the 2022 assays with the 2010-2016 assays are provided in Table 12.4. A description of the hypothesis tests is provided in Section 12.6. There does not appear to be a bias in either of the assay methods/assay time periods, and the average grade of both populations is similar. A probability plot of the distributions of each set of the paired data is provided in Figure 12.16 to illustrate that both assay methods/assay time periods have similar distributions of gold assay values.

Table 12.4: Comparison of 2022 Drilling and 2010-2016 Drilling within 100m and inside "Low Grade + High Grgade" Solids

	Au 2010	-2016 (AA)	Au 202	22 (Gravi)	Test to Compare Means		Test of Paired Data		Probability this data	
#	Mean	Variance	Mean	Variance	Η ₀ : μ ₁ =μ ₂		H ₀ : μ ₁₋₂ =0		Occurred Give	n Null Hypothesis
Pairs	ppm		ppm		T-stat	d.f.	T-stat	d.f.	Η ₀ : μ ₁ =μ ₂	H ₀ : μ ₁₋₂ =0
500	0.16	0.11	0.17	0.08	0.24	964	0.27	499	0.810	0.790

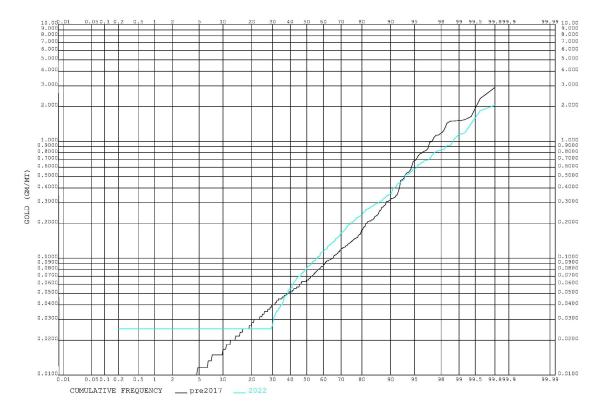


Figure 12.16: Distributions of 2022 Drilling and 2010-2016 Drilling within 100m and inside "Low Grade + High Grade" Solids

12.6 Fall 2021 Check Assay Program

TCP1 completed a 351 sample check assay program in Fall of 2021 to address the lack of QA/QC insertions during the 2018-2020 drilling at the Cristina project. The check assays were comprised of duplicate assays of pulps, coarse rejects and quarter core samples assayed at a different laboratory than the original assays. The results of the test of the means and the paired T-test for all of the check assay data is provided in Table 12.5

Table 12.5: Comp	parison of Check .	Assays and Oi	riginal Assays
------------------	--------------------	---------------	----------------

				Or	iginal	С	heck	Test to Compa	are Means	Test of Paired Data		Probability this Data Observed	
		_	#	Mean	Variance	Mean	Variance	Η ₀ : μ ₁ =μ ₂		Η ₀ : μ ₁₋₂ =0		Given Null Hy	oothesis is True
Duplicate Type	Metal		Pairs	ppm		ppm		T-stat	d.f.	T-stat	d.f.	Η ₀ : μ ₁ =μ ₂	Η ₀ : μ ₁₋₂ =0
Pulp	Au	ppm	213	0.44	2.48	0.41	2.26	0.21	423	1.26	212	0.831	0.208
Coarse Reject	Au	ppm	31	0.15	0.04	0.13	0.04	0.26	60	1.14	30	0.800	0.264
1/4 Core	Au	ppm	107	0.17	0.08	0.16	0.05	0.47	205	1.73	106	0.642	0.087
Pulp	Ag	ppm	213	18.89	3398.10	18.76	3068.78	0.02	423	0.18	212	0.982	0.854
Coarse Reject	Ag	ppm	31	5.90	109.67	6.65	105.50	0.28	60	3.04	30	0.779	0.005
1/4 Core	Ag	ppm	107	6.43	198.39	5.80	176.80	0.33	211	1.40	106	0.739	0.164
Pulp	Zn	%	213	0.33	0.57	0.32	0.53	0.11	423	2.05	212	0.910	0.042
Coarse Reject	Zn	%	29	0.20	0.13	0.20	0.13	0.01	60	0.61	30	0.989	0.544
1/4 Core	Zn	%	107	0.17	0.27	0.17	0.29	0.06	212	0.27	106	0.953	0.787
Pulp	Pb	%	213	0.14	0.13	0.14	0.12	0.00	424	0.07	212	0.998	0.947
Coarse Reject	Pb	%	31	0.06	0.01	0.06	0.01	0.03	60	0.65	30	0.975	0.521
1/4 Core	Pb	%	107	0.05	0.01	0.05	0.03	0.35	188	0.96	106	0.724	0.338
Pulp	Cu	%	213	0.03	0.00	0.03	0.00	0.01	424	0.11	212	0.994	0.911
Coarse Reject	Cu	%	31	0.02	0.00	0.02	0.00	0.10	60	3.04	30	0.922	0.005
1/4 Core	Cu	%	107	0.02	0.00	0.02	0.00	0.14	210	0.68	106	0.887	0.495

Two hypothesis tests were run on the check assay and original assay datasets. Both of the tests that were performed look at the probability of there being a bias in the dataset (for example were one lab's assays higher than another lab's assays). The first hypothesis test tested whether the average grade of the original assays was the same as the average grade for the check assays. None of the results supported the two assays datasets having a different mean value. The second most right column shows the probability that the data that was observed could have occurred if the mean values are equal; all of the probabilities are fairly high. The second hypothesis test tested whether the mean value of the difference of the paired data could be zero. Since this test looks at the difference of the datapoints, it removes the variability in the metal grades. The furthest right column provides the probability that this data would be observed if it is true that the average value of the difference in the paired assay values is zero. Low probabilities can be seen in the Silver coarse reject assays, the zinc pulp assays, and the copper coarse reject assays(i.e. the null hypothesis would have been rejected at a 95% confidence level).

The paired data can be seen in the X-Y plots in Figure 12.10. It looks like there could be a slight low bias in the check gold assays although there was not strong support for a bias in the hypothesis testing. The high bias in the silver coarse reject check assays and low bias in the zinc pulp check assays identified in the hypothesis testing can be seen in the x-y plots, but visually it does not look too bad. TCP1 should implement standard insertions into the assay stream so they can identify potential bias in the assay laboratory results in real time.

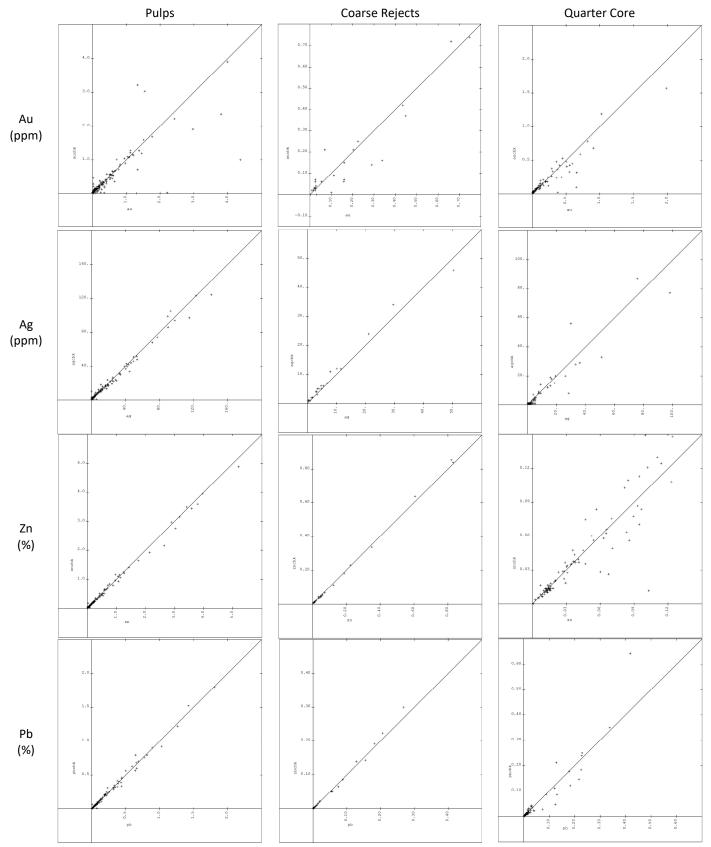


Figure 12.17: X-Y Plots of Original Assays(X) and Check Assays(Y)

The performance of the subset of the 2021 silver check assays performed on the pulps from 2018-2020 drilling are provided in Table 12.6 below. These were split out to check the silver assays during this time period because of the issue with the silver duplicates identified in section 12.3. The check assay work does not show a bias in the silver assays during the Criscora drilling in the 2018-2020 time period. An X-Y plot of only the original silver assays vs silver check assays on the 2018-2020 drilling is provided in Figure 12.18.

Table 12.6: Comparison of Silver Assays Original to Check 2018-2020

	Ag (Original	Ag Ch	eck Assay	Test to Compare Means T		Test of Paired Data		Probability this data	
#	Mean	Variance	Mean	Variance	H ₀ : μ ₁ =μ ₂		H ₀ : μ ₁₋₂ =0		Occurred Give	n Null Hypothesis
Pairs	ppm		ppm		T-stat	d.f.	T-stat	d.f.	Η ₀ : μ ₁ =μ ₂	Η ₀ : μ ₁₋₂ =0
132	22.80	4,666.00	22.35	4,095.00	0.06	261	0.42	131	0.956	0.677

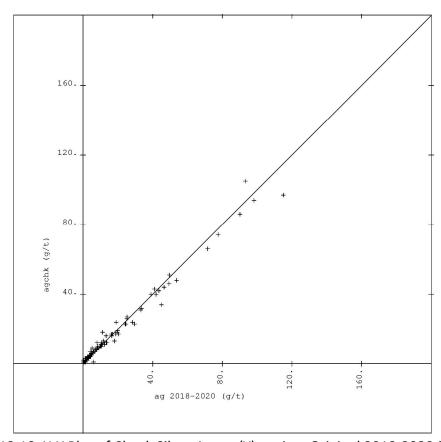


Figure 12.18: X-Y Plot of Check Silver Assays(Y) against Original 2018-2020 Silver(X)

13 Mineral Processing and Metallurgical Testing

The author is not an expert in respect to mineral processing, metal recoveries, and metallurgical testing. What is presented in this section is mainly extracted from an SGS report titled "An Investigation into THE MINERALOGY AND FLOTATION ON SAMPLES FROM THE CRISTINA DEPOSIT" prepared by Jesse Ding on work they completed in summer of 2021. The author believes that the test work that has been completed is sufficient to support a Mineral Resource statement. The author is not aware of any deleterious elements that would have a significant effect on potential economic extraction.

The test work done by SGS was done on sulfide material. TCP1 ordered cyanide soluble assays on a handful of oxide samples; a brief description of those assay results is provided in section 13.2.

13.1 Sulfide Test Work Done by SGS

The final work done by SGS in their testing was to support a copper-lead-zinc-Pyrite circuit making four concentrates. The estimated concentrate grades and recovery of metals to each concentrate is provided in Table 13.1.

Distribution (%) Grade (%, g/t) Stream Pb Pb 7n Au 7n Cu Au (%) Cu Fe Fe 6.40 100 Feed 100.0 0.39 1.12 0.16 5.51 1.13 72.5 100 100 100 100 100 100 Cu 2nd Cl Conc 2 64 3 27 15 0.5 22 0 18.5 33 8 35 9 5817 36 713 18 28 168 424 65.5 Pb 2nd Cl Conc 0.5 3.06 0.38 5.20 17.2 14.7 1910 80.5 1.3 1.1 0.5 1.3 6.3 12.7 1.97 32 4 86.8 0.5 77 213 7n 3rd Cl Conc 15 0.64 63.9 0.96 158 860 25 90 18 1 Py Ro Conc 1+2 179 0.16 0.39 0.08 23.6 29.3 3.06 88.5 7.3 6.3 8.7 77.0 82.1 48.5 21.9 Py Ro Tail 79.5 0.03 0.02 1.40 0.49 0.10 6.1 4.1 6.1

Table 13.1: Estimated Concentrate Grades and Recoveries for Cu-Pb-Zn Flowsheet

13.1.1 Samples used in Testing

All of the samples selected for testing were sulfide material from the Guadalupe vein. The other veins have similar mineralization characteristics. There is a thin transition zone that could or could not have similar flotation performance as the sulfides. Five composite samples and one master composite were generated from the sample material received by SGS. Detail of the samples sent to SGS is provided in Table 13.2. Assay Results of the composite samples and master composite sample are provided in Table 13.3

Table 13.2: Samples Sent to SGS for Test Work

Composite Name	Drill Hole	From, m				Weight, Kg
		279.30	To, m 280.40	Length, m 1.10	Sample ID 601411	3.3
		280.40	282.20	1.80	601412	5.5
		282.20	283.70	1.50	601413	5.1
1	ACD20-167	294.65	295.65	1.00	601423	3.3
	710020 101	297.20	297.70	0.50	601426	1.8
		332.90	333.70	0.80	601427	2.1
		332.30	333.70	0.00	Total	21.0
- 0		405.55	406.75	1.20	601516	4.0
		406.75	407.75	1.00	601517	3.3
		407.75	408.90	1.15	601518	3.3
2	ACD20-170	408.90	409.90	1.00	601519	3.4
		435.10	436.35	1.25	601530	4.3
		400.10	400.00	1.20	Total	18.2
		276.85	278.35	1.50	601544	4.6
		278.35	280.00	1.65	601545	4.6
		280.00	281.50	1.50	601546	4.7
		281.50	282.55	1.05	601546	3.6
3	ACD20-172	282.55	283.85	1.30	601548	4.0
		283.85	285.35	1.50	601549	4.5
		285.35	286.95	1.60	601551	5.0
		286.95	288.75	1.80	601552	5.8
		200.00	200.70	1.00	Total	36.7
		93.55	94.55	1.00	601606	4.5
		94.55	96.05	1.50	601607	5.4
		100.80	102.10	1.30	601611	4.5
		102.10	103.90	1.80	601612	5.0
		103.90	105.60	1.70	601613	4.8
4	ACD20-175	105.60	107.20	1.60	601614	3.9
		112.05	113.05	1.00	601618	3.5
		113.05	114.05	1.00	601619	2.9
		114.05	115.25	1.20	601620	4.4
		111.00	110.20	1.20	Total	38.9
		239.10	240.70	1.60	601637	4.3
		240.70	242.20	1.50	601638	5.3
5	ACD20-176	242.20	243.30	1.10	601639	4.1
0.50		243.30	244.80	1.50	601640	3.9
		2.5.55			Total	17.6
		Grand Total	al			132.2

Table 13.3: Assay Results of Composites

			y itesuits t			
Sample ID	Master Comp (MC)	Comp 1	Comp 2	Comp 3	Comp 4	Comp 5
Au g/t	1.75	1.89	0.65	0.81	1.40	0.70
Au g/t	0.88					
Au g/t	1.06					
Au g/t - Ave.	1.23					
Ag g/t	85	7.8	42	95	103	88
Cu %	0.21	0.01	0.29	0.04	0.46	0.04
Pb %	0.45	0.28	0.61	0.79	0.16	0.15
Zn %	1.30	0.43	1.92	2.05	0.67	0.88
Fe %	5.51	4.26	5.57	4.85	7.62	4.37
S %	6.46	2.67	6.47	6.65	7.90	5.38
Sulphide S = %	6.04	2.06	5.93	5.72	6.04	4.78
C(t) %	0.12	0.40	0.12	0.11	< 0.01	0.08
CO3 %	0.61	1.98	0.62	0.59	< 0.05	0.47
SiO2 %	64.2	59.2	74.4	71.4	63.0	78.7
Al2O3 %	7.66	13.9	3.48	5.62	10.2	4.24
Fe2O3 %	7.88	6.09	7.96	6.94	10.9	6.25
MgO %	0.94	2.77	0.85	0.25	1.05	0.27
CaO %	1.08	4.41	0.7	0.7	0.15	0.59
Na20 %	0.81	2.58	0.62	0.69	0.22	0.31
K2O %	2.56	3.71	0.85	3.11	2.96	1.61
TiO2 %	0.31	0.63	0.15	0.26	0.39	0.2
P2O5 %	0.09	0.17	0.05	0.12	0.08	0.09
MnO %	0.12	0.3	0.1	0.14	0.09	0.07
Cr2O3 %	0.03	< 0.01	0.02	0.04	0.02	0.06
V2O5 %	0.01	0.02	< 0.01	0.01	0.01	0.01
LOI %	5.63	3.66	5.29	5.14	7.35	4.41
Sum %	91.3	97.4	94.5	94.4	96.5	96.8
As g/t	496	551	388	557	184	623
Ba g/t	2760	1240	236	5070	1410	4680
Be g/t	0.62	1.00	0.42	0.48	0.71	0.54
Bi g/t	< 30	< 30	< 30	< 30	< 30	< 30
Cd g/t	100	35	140	161	56	63
Co g/t	60	38	22	27	42	24
Li g/t	52	26	93	56	38	75
Mo g/t	< 30	< 30	< 30	< 30	< 30	< 30
Ni g/t	40	< 20	< 20	67	< 20	129
Sb g/t	203	< 40	262	232	165	236
Se g/t	< 30	< 30	< 30	< 30	< 30	< 30
Sn g/t	< 20	< 20	< 20	< 20	< 20	< 20
Sr g/t	81.9	230	14.2	92.2	29.8	66
TI g/t	< 30	< 30	< 30	36	< 30	73
U g/t	< 20	< 20	< 20	< 20	< 20	< 20
Y g/t	4.5	8.2	2.3	3.5	5.3	2.2

Master Comp = 16% Comp1 +12% Comp2 + 29% Comp3 + 31% Comp4 + 12% Comp5

Mineralogical studies were performed on the five variability composites using QEMSCAN. The samples were stage-ground to 80% passing 100 µm and screened at 75 µm to obtain two size fractions. Each size fraction was analyzed separately. A summary of overall modal mineral abundances is presented in Table 13.4

Sample Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Combined Combined Combined Combined Fraction Ag-Minerals 0.00 0.08 0.05 0.07 0.05 Pyrite 4.89 12.1 11.7 15.7 10.6 0.02 0.01 0.01 0.01 0.01 Pyrrhotite Sphalerite 0.62 2.57 2.94 0.92 1.26 Sphalerite(Fe) 0.18 1.01 0.58 0.26 0.32 Arsenopyrite 0.17 0.32 0.19 0.02 0.16 Chalcopyrite 0.03 0.78 0.03 1.51 0.05 0.42 0.22 0.16 Galena 0.82 1.03 Other Sulphides 0.02 0.07 0.03 0.05 0.05 Quartz 23.2 71.9 60.0 52.6 74.0 Mineral Feldspars 39.3 1.91 16.2 4.40 6.07 Mass (%) Micas 8.31 3.83 193 3.92 4.01 0.76 3.63 0.77 Chlorite/Clays 8.17 2.81 0.05 0.14 0.02 Amphiboles 3.44 0.12 6.20 0.00 0.00 0.00 **Epidote** 0.08 Other Silicates 0.69 0.04 0.01 0.02 0.00 2.87 1.06 0.78 0.01 0.84 Carbonates 0.02 0.03 0.04 0.02 0.05 Fe-Oxides Low Zn Oxides 0.99 0.31 0.71 0.73 0.57 0.20 0.42 0.09 0.25 0.12 Apatite Other 0.07 0.03 0.67 0.26 1.00

Table 13.4: Modal Mineral Abundance of the Composites

A Bond Mill Work index (BWi) test on the master composite yielded a work index of 17.8 kWh/t. This composite fell in the 82nd percentile of sample hardness in SGS's database and is considered hard.

100

100

100

100

Total

13.1.2 Flotation Pb-Zn

The test program started with lead-zinc flotation and separation. A conventional Pb-Zn flotation flowsheet was developed for the master composite and is presented in Figure 13.1. The feed material was ground to k_{80} of 84 μ m in a lab ball mill with mixed mild and stainless steel media. Lime and sphalerite depressants (ZnSO₄/NaCN) were added in the mill, followed by lead rougher flotation. The lead rougher concentrated was reground to k₈₀ of approximately 20 µm with lime, zinc sulphate and cyanide added in a regrind pebble mill, followed by two stages of lead cleaning to produce a final lead concentrate. Collector 3418A was used throughout the lead rougher and cleaner circuit.

The Pb 1st cleaner tail was combined with Pb rougher tail and subjected to zinc rougher flotation. The zinc rougher concentrate was reground and cleaned three times to produce a final zinc concentrate.

Pyrite flotation was conducted on the combined zinc rougher and Zn 1st cleaner tailings.

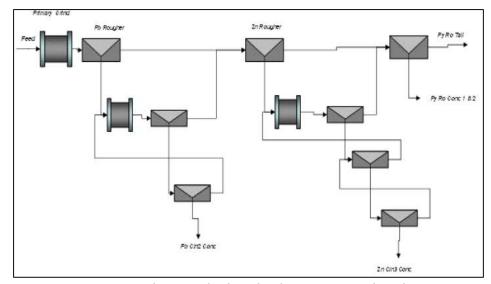


Figure 13.1: Pb-Zn Locked Cycle Flotation Test Flowsheet

Three locked cycle tests were completed on the master composite and the test conditions and results are presented in Tables 13.5 and 13.6. The master composite responded well to the conventional flotation and the best results were obtained from MC-LCT3.

Table 13.5: Summary Conditions of Locked Cycle Flotation Tests

Stage	Flotation Conditions	MC-LCT1	MC-LCT2	MC-LCT3
	Size, µm (k ₈₀)	84	84	84
	Lime, g/t	500	500	500
Primary Grind	ZnSO ₄ , g/t	600	600	600
	NaCN, g/t	200	200	200
	pH	9.0	9.2	9.0
Pb Roughing	3418A, g/t	30	30	30
	pH	10.5	9.5	10.5
	Size, µm (k ₈₀)	16.9	19.3	16.8
Pb Regrind	Lime, g/t	50	50	50
i b regima	ZnSO ₄ , g/t	60	60	60
	NaCN, g/t	20	20	20
Pb Cleaning	3418A, g/t	15	15	15
i b cleaning	pH	11	11	11
	CuSO ₄ , g/t	200	200	200
Zn Roughing	SIPX, g/t	15	15	12
	pH	10	10	10
7- Desired	Size, µm (k ₈₀)	29.8	22.4	22.8
Zn Regrind	CuSO ₄ , g/t	20	20	20
Zn Classins	SIPX, g/t	20	18	14.5
Zn Cleaning	pH	11.5	11.7	11.7
	H ₂ SO ₄ , g/t	915	1010	975
Pyrite Roughing	SIPX, g/t	80	100	100
	pH	7.0	7.0	7.0

MC-LCT1 53.1 MC-LCT2 Zn 2.69 9.14 Fe Cu 7.68 1.35 10.3 Pb Cln2 Conc 20.5 20.5 19.5 Au 25.2 33.9 46.1 Ag 4385 4464 0.35 3977 Zn 47.0 52.6 48.2 Fe 8.70 8.07 7.37 Zn Cln3 Conc 7.28 32.7 33.5 33.9 Au 11.7 13.2 12.2 1446 0.12 1593 1512 Ag Pb Zn Fe Cu 0.16 27.1 0.23 0.16 30.2 Py Ro Conc 1 & 2 0.11 33.2 31.5 S 32.8 Au Ag Pb 2.80 2.63 68 0.02 0.02 Zn Fe Cu 0.06 0.05 0.06 1.32 1.22 1.26 0.01 Py Ro Tail S Au Ag Pb 0.46 0.39 0.45 0.13 5.0 0.12 5.0 0.46 0.42 0.42 Zn Fe Cu 1.24 1.29 5.96 0.19 5.99 5.58 Feed (Calc.) 6.44 6.31 6.48 1.06 74 Au 1.02 1.04 Ag MC-LCT2 Recovery, MC-LCT1 MC-LCT3 Pb Zn 88.7 2.0 87.2 1.6 89.9 1.3 Fe Cu S 1.3 1.0 0.8 Pb Cln2 Conc 4.3 1.8 Au 19.1 20.6 25.8 Ag Pb Zn Fe Cu S 37.2 34.3 35.8 3.8 93.2 91.8 92.3 3.7 3.5 2.6 Zn Cln3 Conc 81.9 12.9 12.7 11.0 24.1 Au 29.2 30.5 Ag Pb 44.7 47.2 42.9 5.4 1.9 77.1 2.1 77.8 Zn Fe 3.1 79.4 Py Ro Conc 1 & 2 Cu S 78.8 42.1 80.1 81.5 39.9 40.0 Ag Pb Zn Fe 13.7 13.5 15.8 3.02 3.84 2.95 3.84 3.77 17.9 17.7 17.2 Cu 4.34 Py Ro Tail 5.87 5.05 Au 9.6 10.2 5.0

Table 13.6: Summary Results of Locked Cycle Flotation Tests

SGS also ran variability tests on the individual composites. The lead cleaner concentrates assayed 42-65% Pb at 53-82% lead recovery while the zinc cleaner concentrates assayed 24-59% Zn at 58-81% zinc recovery. Higher copper grades were found in the lead and zinc cleaner concentrates from Composite 2 and Composite 1 which were the composites with higher copper head grades.

13.1.3 Flotation Cu-Pb-Zn

Most of the copper reported to the zinc cleaner concentrate with the Pb-Zn flowsheet; further flotation test work focused on copper, lead and zinc flotation separation. A sequential copper, lead, and zinc flotation flowsheet was tested to produce separate copper, lead, and zinc concentrates. The batch cleaner test flowsheet is presented in Figure

13.2 and the results are summarized in Table 13.7. Very good results were obtained from the test even though the head grades of copper, lead, and zinc were low for the master composite (0.21% Cu, 0.45% Pb and 1.3% Zn).

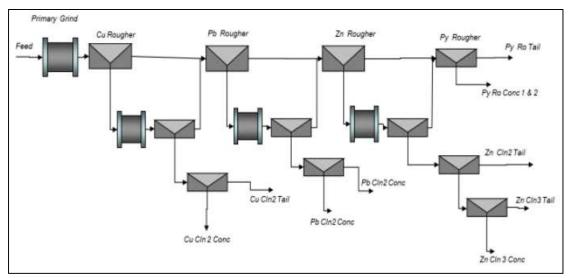


Figure 13.2: Projected Cu-Pb-Zn Batch Cleaner Flotation Test Flowsheet

Product	Wei	ght	Assays, %, g/t							% Distribution						
Product	g	%	Pb	Zn	Cu	Fe	S	Au	Ag	Pb	Zn	Cu	Fe	S	Au	Ag
Cu Cln2 Conc	10.4	0.52	2.6	3.2	21.8	18.4	34.0	35.8	5777	3.1	1.3	56.0	1.7	2.7	16.1	37.5
Cu Cln2 Tail	11.0	0.55	1.91	2.71	3.29	9.5	11.3	13.1	1194	2.4	1.2	8.9	0.9	1.0	6.2	8.2
Pb Cln2 Conc	9.5	0.48	69.0	3.04	0.38	5.2	17.2	15.0	1867	75.8	1.2	0.9	0.4	1.3	6.1	11.1
Pb Cln2 Tail	14.7	0.74	3.40	2.42	0.49	7.9	9.1	3.03	497	5.8	1.4	1.8	1.0	1.0	1.9	4.6
Zn Cln3 Conc	29.7	1.49	0.61	62.1	0.93	2.0	32.7	16.0	833	2.1	73.5	6.8	0.5	7.6	20.5	15.5
Zn Cln3 Tail	3.6	0.18	1.0	42.0	1.22	6.3	26.3	11.4	838	0.4	6.0	1.1	0.2	0.7	1.8	1.9
Zn Cln2 Tail	13.0	0.65	0.47	14.6	0.50	7.3	14.9	3.95	364	0.7	7.6	1.6	0.8	1.5	2.2	3.0
Py Ro Conc 1	271.6	13.67	0.13	0.4	0.05	30.8	35.7	2.90	74	4.1	3.8	3.1	72.2	75.4	34.0	12.5
Py Ro Conc 2	78.8	3.96	0.10	0.2	0.04	5.4	4.7	1.34	31	0.9	0.7	0.7	3.7	2.9	4.6	1.5
Py Ro Tail	1545.2	77.75	0.03	0.05	< 0.01	1.4	0.5	0.10	4.5	4.6	3.3	19.1	18.7	5.9	6.7	4.3
Head (calc.)	1987.5	100.0	0.44	1.26	0.20	5.83	6.47	1.17	81	100	100	100	100	100	100	100
(direct)			0.45	1.30	0.21	5.51	6.46	1.23	85							

Table 13.7: Summary of Results of Cu-Pb-Zn Batch Cleaner Flotation Test

Due to the limited amount of sample available, no locked cycle flotation testing was performed with the sequential Cu-Pb-Zn flotation flowsheet. To estimate the metallurgy, Bilmat modelling was used to project the metallurgy based on the batch cleaner flotation test results. The projected flowsheet is presented in Figure 13.3 and the projected metallurgical response from the Bilmat modelling was summarized in Table 13.1.

It is projected that the copper, lead, and zinc concentrate grades are 22% Cu, 65.5% Pb, and 63.9% Zn at recoveries of 71.3% copper, 80.5% lead, and 86.9% zinc, respectively. Based on this projection, 44.4% of the gold and 73.1% of the silver would report to the Cu, Pb and Zn concentrates, while 48.5% of the gold and 21.9% of the silver would report to the pyrite rougher concentrate. It should be noted that these results are based on one cleaner flotation test and Bilmat projections. Locked cycle flotation testing is required to get the best projected grades and recoveries in the Cu-Pb-Zn flowsheet flotation.

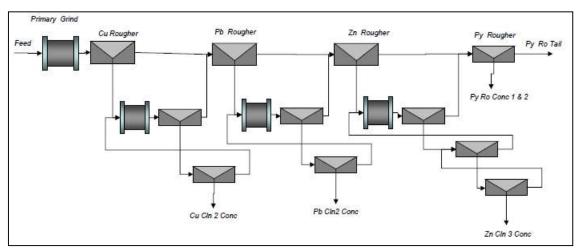


Figure 13.3: Projected Cu-Pb-Zn Locked Cycle Test Flotation Flowsheet

13.1.4 Pyrite Rougher Concentrate Leach

Pyrite rougher concentrate from the Pb-Zn locked cycle tests was submitted for bottle roll cyanidation; the extractions were low (32.9% for gold and 65.8% for silver on average, but 40% for gold and 71% for silver was observed with an ultra-fine grind and intense cyanidation).

The residue of bottle roll cyanidation was submitted for 4-stage diagnostic leach to determine the deportment of the un-leached gold and silver. Overall extractions after HCl and HNO₃ leaching to break down carbonate and sulfide minerals were 79% for gold and 80% for silver. The overall gold and silver recoveries were 84.4% and 94.7%, respectively.

A summary of the gold and silver recoveries at different stages in the flowsheet and in total, is provided in Table 13.8. It should be noted that the estimate was based on the Pb-Zn flowsheet.

	,					,
Sample	Test Stages	Stage Au Distribution (%)	Stage Ag Distribution (%)	Overall Au Extraction (%)	Overall Ag Extraction (%)	Comments
Pb Clnc Conc	Flotation			19.1	37.2	MC-LCT1
Zn Clnc Conc	Flotation		8	29.2	44.7	MC-LCT1
5	Bottle Roll Leach	32.9*	65.8*	13.9	9.0	42.1% gold and 13.7% silver in Py Ro Conc per MC-LCT1
Pyrite Rougher Concenrtate	Diagnostic Leach	78.9	79.9	22.2	3.8	28.2% gold and 4.7% silver in leach residue
	Overall	i i	Ř.	84.4	94.7	

Table 13.8: Pyrite Concentrate Leach and Gold and Silver Recovery Estimate

^{*} Average of leach tests L5, 6, 7 and 8

13.2 Oxides

Only a small amount of the deposit has been identified as oxides and therefore no significant testing has been done on the leachability of gold and silver. In December 2019, TCP1 sent 12 oxide samples to ALS labs for cyanide solubility assays. These samples came from the oxidized portion of the Mexico Libre vein. The average cyanide solubility(CN:FA) of the twelve samples was 0.85:1 for gold and 0.32:1 for silver. A summary of the results is provided in Table 13.9

Gold g/t Silver g/t Ratio Ratio Sample Number FΑ CN:FA CN:FA CN FΑ CN 600535 0.83 0.82 0.99 110 47.75 0.43 600536 0.61 0.64 1.05 99 40.64 0.41 600537 0.30 0.27 0.90 87 26.63 0.31 0.37 600538 0.81 0.67 0.83 87 31.84 20.04 0.39 600539 1.07 1.22 1.14 51

0.14

0.47

2.23

0.72

0.37

0.03

1.16

0.70

0.96

0.90

0.95

0.77

0.05

0.98

41

24

22

35

16

<5

<5

Table 13.9: Cyanide Solubility Results of Mexico Libre Oxide Samples

600572 Average CN:FA Ratios

600540

600541

600548

600549

600558

600570

0.20

0.49

2.48

0.76

0.48

0.62

1.18

0.85 0.32

9.80

7.45

5.93

10.15

2.38

0.12

1.15

0.24

0.31

0.27

0.29

0.15

13.3 Conclusions and Recommendations

A preliminary flotation test program was completed on five variability samples and a master composite made from the five variability samples. BWi tests on the master composites characterized it as hard relative to the SGS data base. Mineralogy indicated that the copper, lead, zinc and pyrite minerals in the deposit were all very well liberated at moderate grind size and would be amenable to separation by conventional flotation techniques. Very good lead and zinc cleaner concentrates were produced. Very good copper and lead separation was achieved in an open circuit batch sequential copper-lead cleaner test.

It is recommended that flotation optimization be conducted to optimize the sequential Cu-Pb-Zn flowsheet and locked cycle flotation testing be completed to best estimate the metallurgy once more material is available.

Additional work needs to be completed to identify recovery methods for refractory gold that reports to the pyrite concentrate. The Pyrite concentrate is assumed to be saleable for the Resource definition in chapter 14.

The pyrite rougher concentrate was subjected to bottle roll cyanidation but only 40% of the gold and 71% of silver in the pyrite rougher concentrate were leached after ultra-fine grinding and applying intensive cyanidation conditions. Leach testing should be continued

in an attempt to improve the gold and silver extractions from the pyrite rougher concentrate. However, refractory gold treatment options such as pressure oxidation may need to be investigated.

14 Mineral Resource Estimate

The Mineral Resource was developed by IMC during fourth quarter 2022 and first quarter 2023. The Mineral Resource was estimated in four block models; two models in the south and two models in the north. Both of the South models are in the same location and both of the North models are in the same location. In each location, there is a model used for the open pit resource "6m model" (6meter x 6meter x 6meter) and there is a model used for the underground resource "3m model" (3meter x 3meter x 6meter). The South models encompass the Guadalupe, Mexico Libre and San Manuel veins; the North models encompass the La Cenicera, El Carmen, Los Ingleses, Estrella and Hilo de Oro veins. For the remainder of the section, these models will be referred to as the North and South models. The drill hole database and interpretations of geology used in developing the resource model were provided to IMC by TCP1. The Qualified Person for the statement of Mineral Resources presented later in this section is Jacob Richey of Independent Mining Consultants Inc.

14.1 Database

The database used in resource estimation included all of the drill holes provided by TCP1 with the exception of ACD19-114, ACD18-116 and ACD20-158. These three holes fall outside of the model(s) extents. There were 223 holes in total. The number of holes drilled by year are included in the following Table 14.1.

Company	Year	# holes drilled
	2010	13
	2011	14
Goldcorp	2012	21
	2014	5
	2015	8
Oro Premier	2016	3
Oro Premier	2017	19
	2018	13
TCD1/Criscoro	2019	43
TCP1/Criscora	2020	53
	2022	28
	Total	220

Table 14.1: Drill Holes Drilled by Year and Company Used in Resource Estimation

14.2 Model Description

The drilling that has been completed to date, targets multiple veins over a large area. Resource models were developed in two areas in order to encompass all of the drilling. The location and dimension of the block models are provided in Tables 14.2 and 14.3. The locations of the models are shown as orange boxes in Figure 14.1. The holes that were used

in estimating the South models are shown in blue; the holes that were used in estimating the North models are shown in green.

Table 14.2: South Model Location and Block Size NAD 27 Zone13

	_			Undergrou	ınd Model	Surface Model			
		Minimum	Maximum	Unit Block Size	Number of	Unit Block	Number of		
		(m) (m)		(m)	Blocks	Size (m)	Blocks		
Nor	thing	2,901,163	2,902,669	3	502	6	251		
East	ting	258,171 262,233		3	1,354	6	677		
Elev	evation 1,020 2,100		6	180	6	180			

Table 14.3: North Model Location and Block Size NAD 27 Zone13

			Undergrou	ınd Model	Surface	e Model
	Minimum	Maximum	Unit Block Size	Number of	Unit Block	Number of
	(m)	(m)	(m)	Blocks	Size (m)	Blocks
Northing	2,901,477	2,904,730	3	550	6	275
Easting	258,498	260,832	3	1,216	6	608
Elevation	n 728 2,048		6	220	6	220

Rotated 30 degrees counterclockwise about "Minimum" coordinate

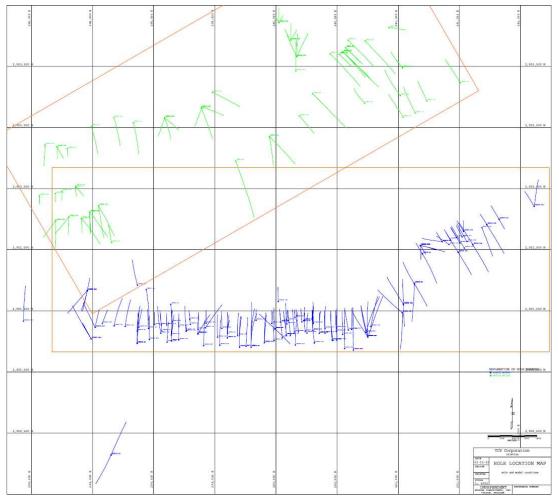


Figure 14.1: Location of Block Models and Drill Holes (source: IMC 2023)

14.3 Geology

For both the South model area and the North model area, geologic solids of vein interpretations and of barren Rhyolite were provided to IMC by TCP1. "High Grade(HG)" and "Low Grade(LG)" solids were drawn to follow the trend of logged vein intercepts. TCP1 used the cutoff grade of 1.75 g/t AuEq to define the high grade boundary. The low grade boundary was drawn to encompass the intercepts above 0.3 g/t AuEq following the trend. Intercepts below cutoff were allowed to be incorporated into the low grade solid. The equation that was used to calculate AuEq is provided:

AuEq(ppm) = 0.00007*Zn(ppm) + 0.00005*Pb(ppm) + 0.0125*Ag(ppm) + Au(ppm)

The percentages of each block contained within the HG and LG solids were stored in the models. IMC adjusted the HG and LG solids in the South models where the solid shapes were not supported by drilling. The solids were also applied to the assay intervals in the drill holes by assigning the solid in which the majority of the interval was located. IMC manually adjusted some intercepts of the grade solids in the drill hole database when the solids were assigned to the incorrect hole interval during the solid tagging process.

14.3.1 Geology in South Model

In the South model, the HG solid is generally contained within the LG solid. A representative Cross Section of the HG and LG solids is provided in Figure 14.2.

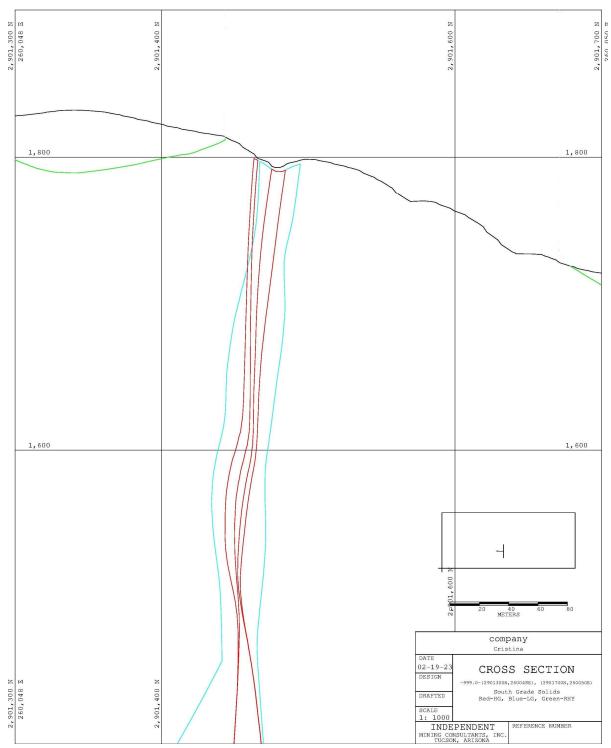


Figure 14.2: Cross Section of Geology Solids in South Model at 260,050E Looking West. HG-Red LG-Blue, Rhyolite-Green

14.3.2 Geology in North Model

The HG and LG solids are narrower in the North model area. This corresponds with narrower mineralized intercepts found in the drilling to the north than the drilling in the south. The HG shapes and LG shapes in the North model area are often separate veins, unlike the South area in which the HG solids are internal to the LG solid. HG and LG solids in the North model are treated as the same unit. A representative Cross Section of the HG and LG solids in the North model area is provided in Figure 14.3.

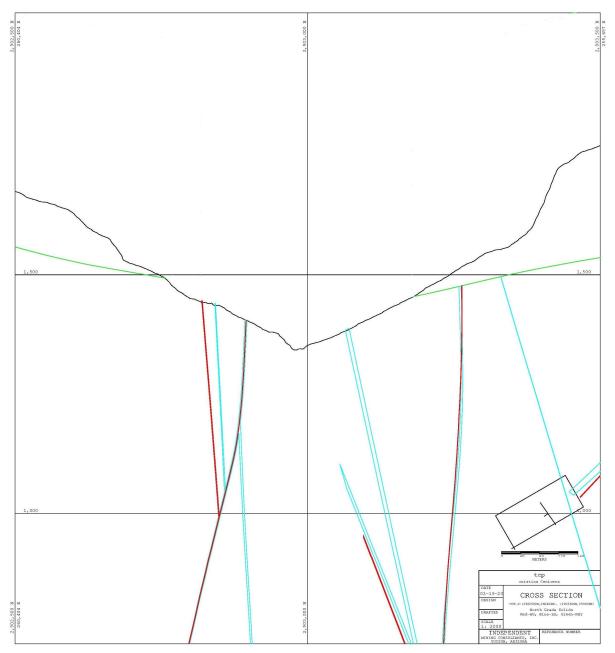


Figure 14.3: Cross Section of Geology Solids in North Model at Los Ingleses Vein Looking West. HG-Red LG-Blue, Rhyolite-Green

14.4 Redox Assignment

Oxide and sulfide surfaces were generated using the implicit modeler in Minesight based on logged intercepts in the drill holes. Two surfaces were developed, top of sulfides and bottom of oxides. These surfaces were used to assign sulfide, transition and oxide to the block model. Redox surfaces were not respected in grade estimation as no evidence was observed to support using a redox boundary.

14.5 Boundary analysis

Boundary analysis was done on the HG/LG boundary and on the HG/outside and LG/outside boundaries to see if these boundaries should be treated as hard boundaries in estimation. Analysis was completed by pairing assays spatially near each other but on opposite sides of the boundary. The statistical tests used to compare the paired data were the: T-test and the Paired T-test. The T-test identifies if there is a difference of the means for paired data on either side of the boundary. The Paired-T test addresses how the paired samples vary from each other. Boundary analysis supported that all HG/LG/outside interfaces should be treated as hard boundaries in grade estimation. Assays within 5 meters of each other on each side of the boundaries were evaluated as paired data, the results for the gold data are provided on Table 14.4. A description of the hypothesis tests is provided in Section 12.6.

Table 14.4: Paired Data; Au Assays within 5m across HG/LG/outside Boundaries

						Test to Compa	are Means	Test of Pair	ed Data	Probabili	ty this data
	#	Au Mean	Variance	Au Mean	Variance	H ₀ : μ ₁ =μ ₂		H ₀ : μ ₁₋₂ =0		Occurred Giver	Null Hypothesis
Company	Pairs	ppm		ppm		T-stat	d.f.	T-stat	d.f.	Η ₀ : μ ₁ =μ ₂	Η ₀ : μ ₁₋₂ =0
		H	G	Out	side						
South	84	1.50	13.43	0.09	0.02	3.52	83	3.53	83	0.001	0.001
North	78	1.39	2.66	0.08	0.04	7.03	79	6.95	77	0.000	0.000
		Le	G	Out	side						
South	287	0.31	1.85	0.09	0.04	2.76	300	2.75	286	0.006	0.006
North	185	0.33	0.22	0.11	0.08	5.42	305	5.59	184	0.000	0.000
		H	G	L	G						
South	368	1.15	4.10	0.27	0.06	8.27	377	8.35	367	0.000	0.000
North	74	1.82	8.32	0.34	0.14	4.42	81	4.37	78	0.000	0.000

Plotting the HG and LG assay interval grades together on a probability plot did not provide a strong indication that there are two populations of high grade mineralization and low grade mineralization. The probability plot of the HG+LG gold assay data for the North and South models is provided in Figure 14.4. The combined data in both the North and South plot in fairly straight lines indicating a single population.

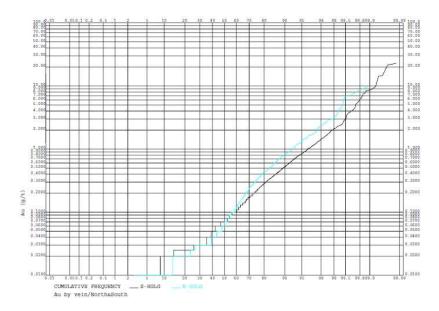


Figure 14.4: Probability Plot of HG+LG gold assays in North (Black) and South (Blue) Models

Ultimately, the decision to separate the HG and LG data in the South model estimation and combine HG/LG data in the North model estimation was determined by comparing the block grade estimate against the composite data. Separating them in the South and combining them in the North produced the best comparison against composite data.

14.6 Capping

Assay grades were capped before composting. Capping was performed on individual domains defined by the HG and LG grade solids provided to IMC by TCP1 and outside (OUT). Cap grades were selected by a combination of reviewing the cumulative frequency plots of assay grades and also reviewing the tails of the metal grade distribution in each domain. The results of assay capping are provided in Table 14.5. The average grades of the uncapped and capped assays are provided. Also provided are: the number of capped assays, the average assay grade above capping grade, and also the percent reduction in average assay grade. Gold assays falling inside the compliment of the high grade solid and inside areas identified as "ore shoots" were not capped. The locations of ore shoots provided by TCP1 are provided in Figure 14.5.

% decrease in Avg grade 5.4 1.9 3.6 2.9 1.0 3.1

Table 14.5: Assay	Metal	Caps
-------------------	-------	------

						_	,					
Silver				Uncapped Assays					Assays	Assays	> Cap	% decrease
		Cap ppm	# Assays	min ppm	max ppm	avg ppm	std ppm	avg ppm	std ppm	# Capped	avg ppm	in Avg grade
La	HG	250	99	0.3	353.0	51.3	60.5	50.3	55.9	2	303.0	1.9
Cenicera	LG	100	856	0.1	167.0	6.5	14.5	6.3	12.7	4	143.0	2.9
	Out	90	8,583	0.0	131.0	1.3	5.1	1.3	4.7	8	107.0	0.0
Guadalupe	HG	600	655	0.3	1200.0	82.1	121.0	79.6	104.9	7	826.0	3.0
	LG	200	6,977	0.0	487.0	6.0	12.9	6.0	11.4	5	284.2	1.0
	Out	110	9.583	0.0	752.0	2.2	11.3	2.0	4.7	5	382.0	9.1

Gold				Un	capped Assa	ys		Capped	Assays	Assays	> Cap	% decrease
		Cap ppm	# Assays	min ppm	max ppm	avg ppm	std ppm	avg ppm	std ppm	# Capped	avg ppm	in Avg grad
La	HG*	7	99	0.03	20.70	1.77	2.60	1.75	2.56	2	7.93	1.1
Cenicera	LG	2	856	0.00	2.60	0.17	0.28	0.17	0.28	1	2.60	0.0
	Out	2	8,586	0.00	9.24	0.04	0.15	0.04	0.12	7	3.30	0.0
Guadalupe	HG*	8	655	0.00	28.80	1.14	1.97	1.12	1.90	4	10.28	1.8
	LG	3	6,977	0.00	22.80	0.14	0.35	0.14	0.22	4	8.89	0.0
	Out	1.2	9,583	0.00	2.30	0.04	0.09	0.04	0.08	5	1.79	0.0

		*Au assays in identified "ore shoots" not capped												
Zinc				Un	capped Assa	Capped	Assays	Assays	> Cap					
		Cap ppm	# Assays	min ppm	max ppm	avg ppm	std ppm	avg ppm	std ppm	# Capped	avg ppm			
La	HG	80,000	99	52	152,500	17,226	23,142	16,291	18,933	2	126,250			
Cenicera	LG	50,000	856	25	67,600	2,303	6,181	2,259	5,779	4	59,375			
	Out	20,000	8,560	0	50,200	385	1,518	371	1,228	13	28,785			
Guadalupe	HG	80,000	655	54	152,500	12,589	17,844	12,219	15,848	8	110,375			
	LG	40,000	6,977	0	95,500	1,382	3,209	1,368	2,945	5	58,700			
	Out	15,000	9,583	0	40,500	419	1,206	406	934	11	26,295			

Lead				Uncapped Assays				Capped	Assays	Assays	> Cap		% decrease
		Cap ppm	# Assays	min ppm	max ppm	avg ppm	std ppm	avg ppm	std ppm	# Capped	avg ppm	. !	in Avg grade
La	HG	20,000	99	35	50,300	4,722	6,496	4,517	5,242	1	50,300	, !	4.3
Cenicera	LG	15,000	856	1	32,200	682	1,897	654	1,548	5	18,406	, !	4.1
	Out	9,000	8,584	0	15,500	120	538	117	475	8	12,050	, !	2.5
Guadalupe	HG	40,000	655	12	56,600	4,746	6,828	4,693	6,503	5	46,920		1.1
	LG	20,000	6,977	0	39,700	515	1,333	509	1,177	4	32,125	, !	1.2
	Out	14,000	9,583	0	18,300	138	537	138	519	3	16,017	, !	0.0

Copper				Un	capped Assa	ys		Capped	Assays	Assays	> Cap		% decrease
		Cap ppm	# Assays	min ppm	max ppm	avg ppm	std ppm	avg ppm	std ppm	# Capped	avg ppm	.	in Avg grade
La	HG	12,000	99	18	20,800	1,692	3,208	1,530	2,363	2	20,000		9.6
Cenicera	LG	4,000	856	3	6,540	220	489	215	432	2	5,110	. !	2.3
	Out	4,000	8,584	0	13,800	115	283	112	212	7	6,979	. !	2.6
Guadalupe	HG	12,000	655	5	38,400	971	2,169	924	1,611	4	19,638	.	4.8
	LG	5,000	6,977	0	9,270	135	349	133	316	6	7,025	. !	1.5
	Out	2,000	9,583	0	7,120	64	148	63	111	10	3,323		1.6

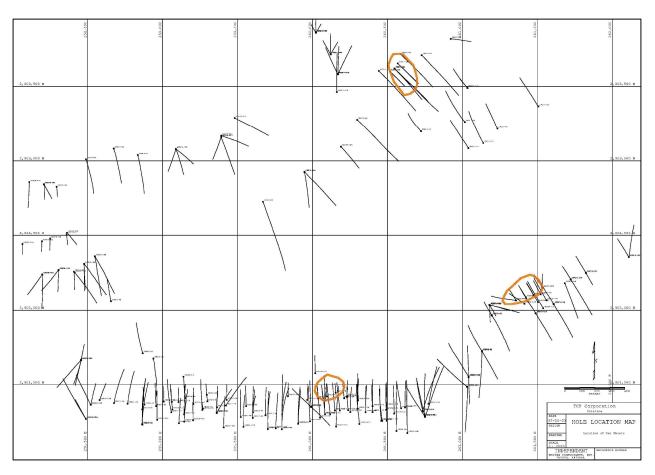


Figure 14.5: Location of "Ore Shoots" where Gold Grades are un-capped in Orange (source: IMC 2023)

14.7 Compositing

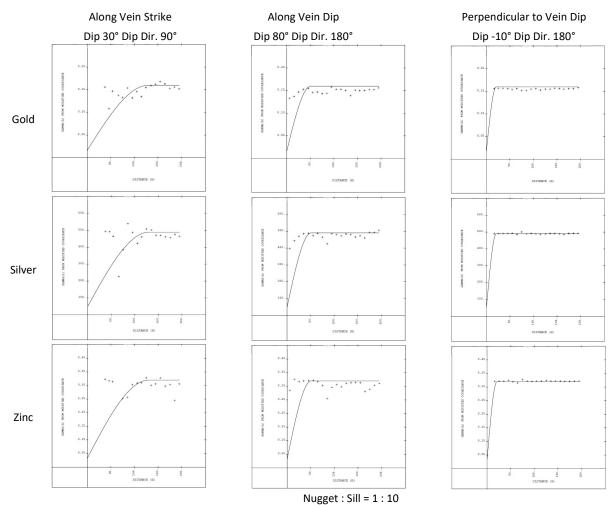
Drill holes were composited to both 3 meter and 6 meter down hole composites. The 3 meter composites were used to estimate the 3 meter models and the 6 meter composites were used to estimate the 6 meter models.

Drill holes in the South model were composited to down hole irregular 3 meter or 6 meter composites respecting the geologic HG and LG solid boundaries. Composites could be as short as 0.5m if required in order to respect the solid boundaries between HG and LG and between the solids and "outside".

In the North Model, the high-grade and low-grade solids were considered as a homogenous mineralization solid. The solids were assigned to the model and drill holes as a single unit. Drill holes were composited to down hole irregular 3 meter or 6 meter composites respecting the geologic HG/ LG solids. Composites could be as short as 0.5m if required in order to respect the boundary between the solids and "outside".

"No-Assay" (NA) intervals were treated as zero intervals during compositing.

A comparison of assay values and composite values used in resource estimation is provided in Table 14.6.


Table 14.6: Average Assay Grades and Average Composites

		# Assays	Mean Values								
			Length (m)	Au (g/t)	Ag (g/t)	Pb (%)	Zn (%)	Cu (%)			
	HG	655	1.42	1.12	79.7	0.47	1.22	0.09			
South	LG	7,004	1.65	0.14	5.9	0.05	0.14	0.01			
	Out	10,503	3.01	0.04	1.8	0.01	0.04	0.01			
North	HG/LG	960	1.44	0.33	10.8	0.10	0.37	0.03			
North	Out	9,589	2.09	0.04	1.1	0.01	0.03	0.01			

		# Comp-	N	Лean Value	es of 3 met	er Comp	osites				
		sites	Length (m)	Au (g/t)	Ag (g/t)	Pb (%)	Zn (%)	Cu (%)			
	HG	392	2.39	1.05	72.2	0.45	1.15	0.09			
South	LG	4,030	2.95	0.13	5.3	0.05	0.12	0.01			
	Out	10,492	2.99	0.02	0.9	0.00	0.02	0.00			
North	HG/LG	517	2.82	0.32	10.3	0.10	0.35	0.03			
NOTH	Out	6,651	3.00	0.03	0.8	0.01	0.02	0.01			
		# Comp-	Mean Values of 6 meter Composites								
		sites	Length (m)	Au (g/t)	Ag (g/t)	Pb (%)	Zn (%)	Cu (%)			
	HG	270	3.46	1.06	66.0	0.46	1.12	0.08			
South	LG	2,065	5.77	0.13	5.5	0.05	0.12	0.01			
	Out	5,160	5.96	0.02	1.0	0.01	0.02	0.00			
North	HG/LG	279	5.11	0.35	12.4	0.12	0.40	0.04			
NOTUI	Out	3,345	5.98	0.03	0.8	0.01	0.02	0.01			

14.8 Variography

Experimental variograms were developed for the different populations within the deposit. Most of the search domains (see Figure 14.7 and Figure 14.8) did not contain enough data points to produce a consistent variogram. Fairly consistent variograms for all metals were produced in the Guadalupe vein in search Domains 1 and 2. The variograms observed in the Guadalupe vein in search domains 1 and 2 formed the basis for the search parameters used in all populations. Figure 14.6 provides the experimental variograms for gold, silver and zinc in the Guadalupe vein in Domains 1+2. The search directions of the variograms are: 1: Along strike of the vein, 2: Down dip of the vein, and 3: Perpendicular to the vein. The fitted variograms are shown over the experimental variograms. The nugget to sill ratio of the fitted variograms is 1:10. The orientation and ranges of the variograms were used to guide the search parameters in grade estimation.

Primary Range: 130m, Secondary Range = 75m, Tertiary Range = 30m
Primary direction is oriented: Dip 30° Dip Dir. 90°
Secondary is oriented: Dipping 80° to the South from Primary
Teritary is perpendicular to Secondary

Figure 14.6: Experimental and Fitted Variograms for Au, Ag and Zn in Guadalupe Vein Domains 1+2

14.9 Grade Estimation

All block grades were estimated using inverse distance cubed ("ID3"). This method was chosen so that block grade estimates would closely reflect the variation in the composite grades. The grade solid boundaries were respected in the estimation process (e.g. only composites inside of the HG solid were used to estimate blocks inside of the HG solid).

Blocks could be estimated with the influence of a minimum of one composite. A maximum of two composites could be used from the same hole to estimate a block. A maximum of 10 composites total could be used to estimate a block grade.

No grades were estimated for blocks defined as Rhyolite.

14.9.1 South Model Grade Estimation

The 3 meter and 6 meter South models were estimated using the same methods. For all estimation runs, blocks are estimated respecting the LG and HG solids as hard boundaries. For each estimation step, three passes of estimations were made:

Pass 1, estimating "high grade" in blocks that have been assigned an HG partial. Pass 2, estimating "low grade" in blocks that have been assigned a LG partial. Pass 3, estimating "outside blocks" in blocks that fall all or partially outside of the solids.

The average block grade is calculated by multiplying partial percentages by the grade estimated for that partial using the equation:

Block Grade South = HG% * HG grd. est. + LG% * LG grd. est. + OUT% * OUT grd. est.

The same search distances and orientations were used for all passes. The search ellipses and orientations are provided in Table 14.7. The search domains are shown over the drill holes and HG solid outlines in Figure 14.7.

Table 14.7: Search Ellipses and Orientations for the South Model

	Search Distances (m)			Search Orientation (deg)		
Domain	Primary	Secondary	Tertiary	Primary	Dip	Rotate
1	130	75	30	90	30	80
2	130	75	30	90	40	80
3	100	100	30	142	90	0
4	100	100	30	156	80	0
5	100	75	30	58	0	80

^{*}Orientation: The Search Orientation is as follows:

Primary is the orientation of the primary axis

Dip is the dip of the primary axis

Rotate is the clockwise rotation about the primary axis

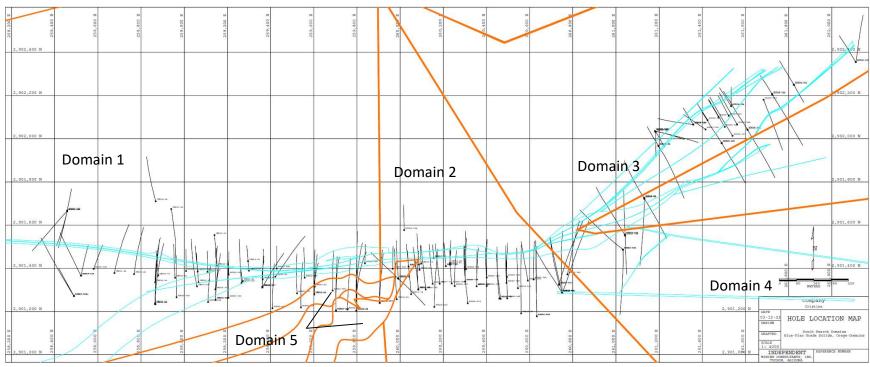


Figure 14.7: Search Domains in South Model (source: IMC 2023)

14.9.2 North Model Grade Estimation

The 3 meter and 6 meter North models were estimated using the same methods. The veins in the North model area are narrower and less centralized than the vein(s) in the South model area. Multiple vein grade intercepts are observed outside of the grade solids. Additional vein "geometries" were incorporated into the model using an indicator nearest neighbor estimation.

The same search orientations were used for all steps. The search distance in the tertiary direction was opened up a bit when estimating inside of the HG/LG shapes to ensure blocks were estimated in the grade solids. The search ellipse and orientations are provided in Table 14.8. The search domains are shown over the drill holes and HG solid outlines in Figure 14.8.

Table 14.8: Search Elipses and Orientations for the North Model

	Search Distances (m)			Search Orientation (deg)		
Domain	Primary	Secondary	Tertiary	Primary	Dip	Rotate
1	100	100	30 or 50*	355	-90	0
2	100	100	30 or 50*	160	-82	0
3	100	100	30 or 50*	314	-90	0
4	100	100	30 or 50*	335	-85	0
5	100	100	100	0	0	0

^{*}Inside of LG/ HG grade shapes, Tertiary distance of 50m was used to ensure estimation filled in constrained volume.

Primary is the orientation of the primary axis

Dip is the dip of the primary axis

Rotate is the clockwise rotation about the primary axis

Estimating grades inside of the HG/LG shape was similar to the method used in the South model except that the HG/LG solids were treated as a single unit. Block partials inside of the HG/LG solids could only be estimated by composites inside of the HG/LG solids.

A two-step process was used to estimate the grades outside of the HG/LG shape in the North model.

The average block grade is calculated by multiplying the block partial percentages by the grade estimated for that partial using the equation:

Block Grade North = HG/LG% * HG/LG grd. est. + OUT% * OUT grd. est.

14.9.2.1 Grade Estimation outside HG/LG Shape Partial

Step 1:

A nearest neighbor indicator estimation was performed on blocks assigned a partial outside of the HG/LG solids to establish vein geometries that had not been modeled as grade solids. This was accomplished by calculating the NSR of composite intervals (using the inputs in

^{*}Orientaion: The Search Orientation is as follows:

Table 14.12) and performing a nearest neighbor indicator estimate with a discriminator of \$10.00/t NSR. Vein shapes outside of the HG/LG solids were represented by blocks with a probability of 1 of being greater than \$10.00/t NSR.

Step 2:

The "vein shapes" estimated in the previous steps were treated as hard boundaries. The blocks outside of the HG/LG shapes, but tagged as having an NSR greater than \$10.00/t, were only estimated using composites outside of the HG/LG solids but located inside of the blocks having a probability of 1 of being greater than \$10.00/t NSR.

Blocks outside of the HG/LG grade solids and not tagged as "vein shapes" were only estimated using composites located outside of the HG/LG solids and outside the blocks having a probability of 1 of being greater than \$10.00/t.

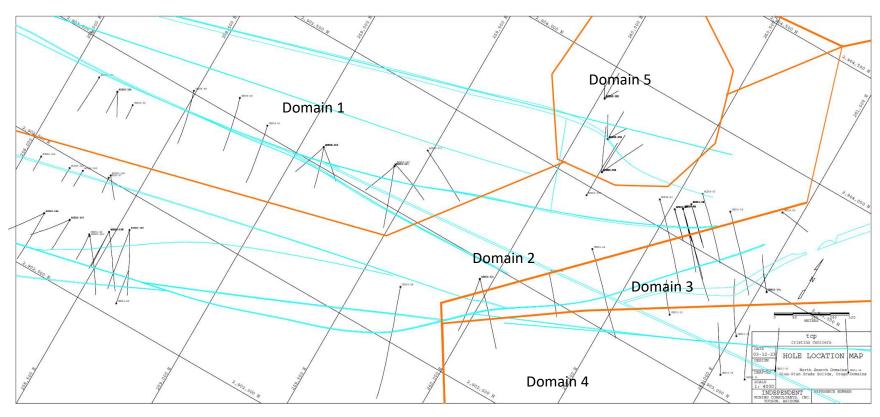


Figure 14.8: Search Domains in North Model (source: IMC 2023)

14.10 Classification

Classification was assigned based on the number of composites and the average search distance to the composites from the nearest two holes used to estimate a block. Classification was assigned on a whole block basis. The criteria for the classification of Indicated and Inferred material are provided in Table 14.9. Since the maximum number of composites from a single hole that could be used to estimate a block was 2, requiring at least 3 composites being used for indicated blocks ensured that 2 or more holes were used in estimation. The distance of 60 meters is approximately ½ of the maximum range of the variogram that was observed in the main Guadalupe vein.

Table 14.9: Classification Criteria

Code	Class	Avg Distance (m) to 2 Closest Holes	Min # Composites	Equivalent # Holes
2	Indicated	<60	3	2
3	Inferred	none	1	1

14.11 Density

Density measurements taken prior to 2022 were provided to IMC in the drill hole logs. There were 4,133 density measurements in 61,478 meters of 2010-2020 drilling or approximately one density measurement every 15 meters. The data was sorted by redox and location within the HG/LG/Outside/Rhyolite solids. The upper and lower decile of density measurements from each subset were removed to get rid of outliers. It was observed that the main controlling factor on rock density is redox. Average densities by redox and HG/LG/Outside/Rhyolite domains were applied to both block models. The average observed densities and applied densities by domain for the South model are provided in Table 14.10. The average observed densities and applied densities by domain for the North model are provided in Table 14.11.

Table 14.10: Densities Applied to the South Model

Redox	Solid	Average SG	# Samples	SG Applied to Model
oxide	HG	2.63	5	2.63
oxide	LG	2.59	14	2.57
oxide	Out	2.56	263	
trans	HG	2.65	6	2.65
trans	LG	2.63	26	
trans	Out	2.65	155	
sulfide	HG	2.75	62	2.75
sulfide	LG	2.74	389	
sulfide	Out	2.75	1233	
	RHY	2.45	13	2.45

100	/IC 1-1.1	ET. Densities	Applica to t	inc North Model
Redox	Solid	Average SG	# Samples	SG Applied to Model
oxide	HG		0	2.63
oxide	LG		0	2.58
oxide	Out	2.58	32	
trans	HG	2.65	5	2.67
trans	LG		0	
trans	Out	2.68	62	
sulfide	HG	2.81	18	2.78
sulfide	LG	2.76	28	
sulfide	Out	2.77	1068	
	RHY		0	2.45

Table 14.11: Densities Applied to the North Model

14.12 Verification

Both a nearest neighbor estimate (NN) and an ordinary kriged (OK) estimate were developed to check against the inverse distance (ID3) cubed model. The cumulative frequency plots of all three estimations were reviewed and compared against the cumulative frequency plots of the composites and all cross at the same metal grade indicating that the method chosen isn't biasing the estimate high or low. Checking the distribution of the ID3 estimate against the NN estimate provides an idea of whether or not high-grade clustering of the drill hole data is biasing the estimate; there does not appear to be a bias in the ID3 estimate. All three estimation methods show very similar variability, however the ID3 estimate is less variable than the NN estimate and more variable than the OK estimate which is to be expected.

Cross sections and plan maps were visually compared against the drill hole composite grades to verify grade estimates.

14.13 Mineral Resource Estimate

Mineral Resource estimates for both models include in-situ material that meets the requirements for reasonable prospects for eventual economic extraction, either by underground mining methods, or is contained within a computer generated pit shell. The metal prices used to define the Mineral Resource estimate are: \$1700/oz Au, \$23.61/oz Ag, \$1.32/lb Zn, \$0.94/lb Pb and \$3.78/lb Cu.

Economic benefit was applied to both Indicated and Inferred material for the determination of Mineral Resources. Table 14.12 summarizes the input parameters for calculating the Net of Smelter Return for sulfide and transition blocks. The recoveries and concentrate grades presented in Table 14.12 are results from SGS Bilmat modelling from their June 2021 metallurgy work that is summarized in Table 13.1.

Table 14.12: Process Recovery and Smelter Terms for Sulfide and Transition Material

Copper Conc						Zinc Conc						
Grade	22	%	TCRC-	\$83/t			Grade Zn	63.9	%	Assume El	ectrolytic Smelter	
Metal Reco	overies		Copper-Pay 95%	%			Metal Reco	veries		TCRC-	\$214/t	
Cu	71	%	Gold - pay 93%				Cu	9	%	Zinc-Pay 8	5%	
Pb	3.6	%	silver deduct de	educt greater of	30 gram or pay 90%		Pb	2.5	%	Gold - ded	uct 1 gram, pay 65%	
Zn	1.5	%	Penalty: 2\$ per	% over 3% for P	b+Zn		Zn	86.8	%	silver ded	uct 100 grams and pa	y 70%
Au	16.8	%	Freight	125	\$/wmt		Au	21.3	%	Freight	125 \$/wmt	
Ag	42.4	%	Refining	0.08\$/lb cu			Ag	18.1	%	Refining	5.00\$/oz Au	
				5.00\$/oz Au							1.00\$/oz Ag	
				0.45\$/oz Ag								
Lead Conc			TCRC-	\$130/t		Pyrite Conc						
Grade Pb	65.5	%	lead-pay95%				Grade S	29.3	%	Payable		
Metal Reco	overies		Gold - deduct g	ram, pay 95%			Metal Reco	veries		Conc		
Cu	1.1	%	silver deduct 30	grams and pay	95%		Cu	9.9	%	97.5	%Au	
Pb	80.5	%	Freight	125	\$/wmt		Pb	6.1	%	97.5	%Ag	
Zn	1.3	%	Refining	5.00\$/oz Au			Zn	4.1	%	Freight	125 \$/wmt	
Au	6.3	%		1.00\$/oz Ag			Au	48.5	%	Refining	5.00\$/oz Au	
Ag	12.7	%					Ag	21.9	%		1.00\$/oz Ag	
							S	82.1	%			

Approximate Total Recovery * Payability: Au: ~82% Ag: ~84% Zn: ~74% Pb: ~76% Cu: ~67%

The following inputs were used for calculating the NSR of oxide blocks: 75% Au recovery and 50% Ag recovery was used. Assume 98% payability and \$5.00/oz Au Refining and \$1.00/oz Ag refining.

The mining and processing inputs used to constrain the Mineral Resource estimate are provided in Table 14.13.

Table 14.13: Inputs to Constrain Mineral Resource

Process:	\$8.35/t proc.
G&A:	\$1.00/t proc.
Open Pit:	
Ore Mining:	\$2.25/t
Waste Mining	\$2.00/t
Overall Slope Angle	50 Degrees
Underground Mining Cost:	\$45.65/t

The open pit Mineral Resource estimate is defined as the Indicated and Inferred blocks in the 6 meter block models within a computer-generated pit with a net of process greater than \$9.60/t. A layout of the \$1,700/oz Resource pit shell in the South model is provided in Figure 14.9. A layout of the \$1,700/oz Resource pit shell in the North model is provided in Figure 14.10.

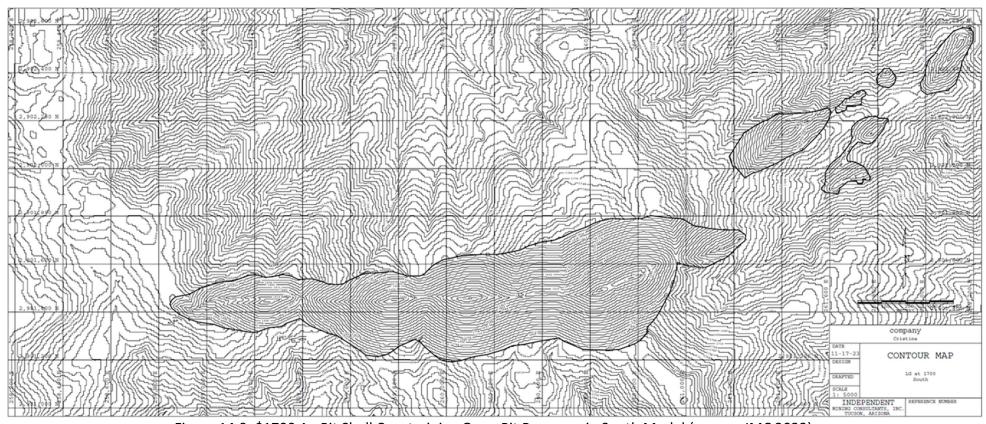


Figure 14.9: \$1700 Au Pit Shell Constraining Open Pit Resource in South Model (source: IMC 2023)

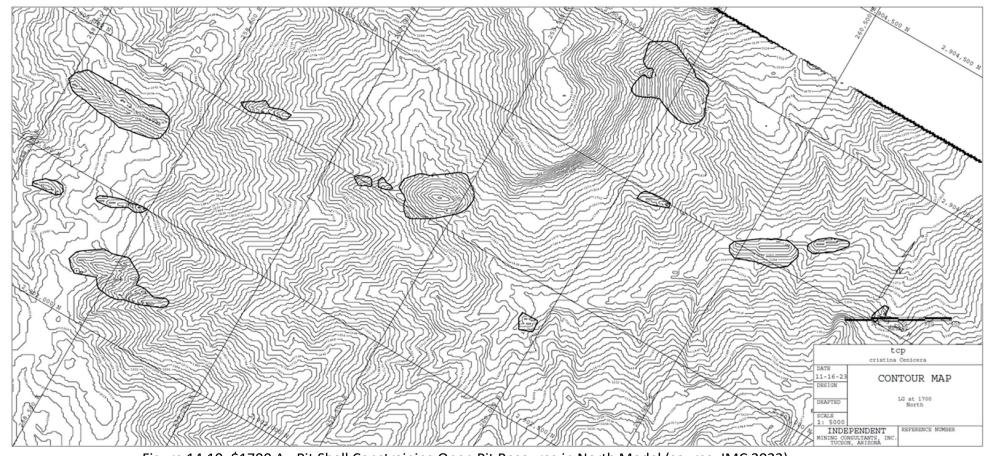


Figure 14.10: \$1700 Au Pit Shell Constraining Open Pit Resource in North Model (source: IMC 2023)

The underground Resource estimate is defined as, the Indicated and Inferred blocks of the 3 meter block models outside of the computer generated pit with a net of process greater than (Mining Cost + Process + G&A) and touching at least 3 other blocks with a net of process greater than (Mining Cost + Process + G&A)(\$55/t). Requiring the blocks above cutoff to be neighboring other blocks above cutoff results in geometry that approximates a mineable stope.

Sensitivities to metal prices were run at gold prices between \$1,600/oz and \$2,000/oz. The other metal prices were adjusted relative to gold. Pit optimizations were run at the various metal prices. All of the pits were tabulated at \$9.60/t NSR(NSR calculated at various metal prices) cutoff grade. The underground tonnages for each sensitivity were defined in the same way as the underground Resource tonnage, but adjusting the block NSR value by the metal prices. The metal prices for the sensitivities are provided in Table 14.14. The sensitivities to metal price of the potentially economic material are provided in Table 14.15.

Table 14.14: Metal Prices used in Sensitivities of Potentially Economic Material

Au Price	\$1,600	\$/oz	\$1,700	\$/oz	\$1,800	\$/oz	\$1,900	\$/oz	\$2,000	\$/oz
Ag Price	22.22	\$/oz	23.61	\$/oz	25.00	\$/oz	26.39	\$/oz	27.78	\$/oz
Zn Price	1.24	\$/lb	1.32	\$/lb	1.40	\$/lb	1.48	\$/lb	1.56	\$/lb
Pb Price	0.89	\$/lb	0.94	\$/lb	1.00	\$/lb	1.06	\$/lb	1.11	\$/lb
Cu Price	3.56	\$/lb	3.78	\$/lb	4.00	\$/lb	4.22	\$/lb	4.44	\$/lb

				•				7	iviateri				
		l Open Pit ar					ı	1			ontained Met		
AuPr \$/oz	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %		Au koz	Ag koz	Zn klb	Pb klb	Cu klb
2000	26,627	40.57	0.40	25.20	0.39	0.15	0.03		346	21,571	213,306	83,022	17,250
1900	24,552	39.87	0.42	26.54	0.40	0.15	0.03		334	20,947	201,619	76,791	16,151
1800	21,768	39.81	0.44	28.61	0.41	0.16	0.04		310	20,024	184,665	72,682	18,514
1700	16,486	43.00	0.49	34.27	0.46	0.19	0.04		262	18,166	153,531	62,294	12,601
1600		53.85	0.65	44.70	0.57	0.23	0.05	İ	186	12,718	101,919	40,351	10,118
		I	I				I	_		,	,	,	,
1	North Mode	l Open Pit ar	nd Undergr	ound Indic	ated Mat	erial				Co	ontained Met	:al	
AuPr \$/oz	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %		Au koz	Ag koz	Zn klb	Pb klb	Cu klb
2000	1,634	57.67	0.66	23.98	0.51	0.20	0.06		35	1,260	17,725	6,982	2,221
1900	1,388	57.33	0.71	24.17	0.55	0.21	0.07		32	1,079	16,100	6,299	2,006
1800	1,201	56.55	0.75	24.82	0.57	0.23	0.07		29	958	14,559	5,840	1,763
1700	1,041	55.54	0.80	25.74	0.59	0.24	0.08		27	861	12,992	5,191	1,631
1600	868	54.24	0.84	27.09	0.59	0.25	0.08		24	756	10,743	4,583	1,340
			•	•									
Total Nor	th and Sout	h Models Op	en Pit and	Undergrou	ınd Indica	ited Mate	erial			Co	ontained Met		
AuPr \$/oz	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %		Au koz	Ag koz	Zn klb	Pb klb	Cu klb
2000	28,261	41.56	0.42	25.13	0.40	0.16	0.03		380	22,831	231,031	90,004	19,471
1900	25,940	40.81	0.44	26.41	0.41	0.16	0.03		366	22,025	217,719	83,090	18,157
1800	22,969	40.69	0.46	28.41	0.42	0.17	0.04		339	20,982	199,224	78,522	20,277
1700	17,527	43.74	0.51	33.77	0.47	0.19	0.04		288	19,028	166,523	67,485	14,231
1700	1,,52,												
1600	9,717	53.89	0.67	43.13	0.57	0.23	0.06		210	13,474	112,662	44,934	11,458
			0.67	43.13	0.57	0.23	0.06		210	13,474	112,662	44,934	11,458
1600	9,717		ı				0.06		210	Co	112,662 ontained Met		11,458
1600	9,717	53.89	ı				0.06 Cu %		210 Au koz				11,458 Cu klb
1600	9,717 South Mode	53.89 el Open Pit a	nd Undergi	round Infe	red Mate	erial				Co	ontained Met	al	
1600 AuPr \$/oz	9,717 South Mode	53.89 el Open Pit a NSR \$/t	nd Undergi Au g/t	round Infe	red Mate	erial Pb %	Cu %		Au koz	Co Ag koz	ontained Met	al Pb klb	Cu klb
1600 AuPr \$/oz 2000	9,717 South Mode ktons 26,167	53.89 el Open Pit a NSR \$/t 37.26	nd Undergi Au g/t 0.40	round Infer Ag g/t 20.43	red Mate Zn % 0.37	erial Pb % 0.15	Cu % 0.04		Au koz 334	Co Ag koz 17,191	ontained Met Zn klb 197,247	ral Pb klb 76,300	Cu klb 21,321
1600 AuPr \$/oz 2000 1900	9,717 South Mode ktons 26,167 23,820	53.89 el Open Pit a NSR \$/t 37.26 36.69	nd Undergi Au g/t 0.40 0.41	round Infer Ag g/t 20.43 21.47	red Mate Zn % 0.37 0.39	erial Pb % 0.15 0.15	Cu % 0.04 0.04		Au koz 334 316	Ag koz 17,191 16,444	ontained Met Zn klb 197,247 187,004	ral Pb klb 76,300 70,470	Cu klb 21,321 19,838
1600 AuPr \$/oz 2000 1900 1800	9,717 South Mode ktons 26,167 23,820 21,392	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29	nd Undergi Au g/t 0.40 0.41 0.44	round Infer Ag g/t 20.43 21.47 22.78	red Mate Zn % 0.37 0.39 0.41	erial Pb % 0.15 0.15	Cu % 0.04 0.04 0.04		Au koz 334 316 301	Ag koz 17,191 16,444 15,665	ontained Met Zn klb 197,247 187,004 176,486	Pb klb 76,300 70,470 66,876	Cu klb 21,321 19,838 17,759
1600 AuPr \$/oz 2000 1900 1800 1700 1600	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05	nd Undergi Au g/t 0.40 0.41 0.44 0.49	round Infel Ag g/t 20.43 21.47 22.78 27.01 34.87	red Mate Zn % 0.37 0.39 0.41 0.46 0.58	Pb % 0.15 0.15 0.16 0.19	Cu % 0.04 0.04 0.04 0.05		Au koz 334 316 301 255	Ag koz 17,191 16,444 15,665 14,025	2n klb 197,247 187,004 176,486	ral Pb klb 76,300 70,470 66,876 58,949	Cu klb 21,321 19,838 17,759 14,926
1600 AuPr \$/oz 2000 1900 1800 1700 1600	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43	nd Undergi Au g/t 0.40 0.41 0.44 0.49	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87	red Mate Zn % 0.37 0.39 0.41 0.46 0.58	Pb % 0.15 0.15 0.16 0.19	Cu % 0.04 0.04 0.04 0.05		Au koz 334 316 301 255	Ag koz 17,191 16,444 15,665 14,025	2n klb 197,247 187,004 176,486	Pb klb 76,300 70,470 66,876 58,949 46,588	Cu klb 21,321 19,838 17,759 14,926 13,070
1600 AuPr \$/oz 2000 1900 1800 1700 1600	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05	nd Undergi Au g/t 0.40 0.41 0.44 0.49	round Infel Ag g/t 20.43 21.47 22.78 27.01 34.87	red Mate Zn % 0.37 0.39 0.41 0.46 0.58	Pb % 0.15 0.15 0.16 0.19	Cu % 0.04 0.04 0.04 0.05		Au koz 334 316 301 255	Ag koz 17,191 16,444 15,665 14,025	zn klb 197,247 187,004 176,486 147,841 122,504	Pb klb 76,300 70,470 66,876 58,949 46,588	Cu klb 21,321 19,838 17,759 14,926
1600 AuPr \$/oz 2000 1900 1800 1700 1600	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05	nd Undergi Au g/t 0.40 0.41 0.44 0.49 0.62	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87	red Mate Zn % 0.37 0.39 0.41 0.46 0.58	Pb % 0.15 0.15 0.16 0.19 0.23	Cu % 0.04 0.04 0.04 0.05 0.06		Au koz 334 316 301 255 207	Ag koz 17,191 16,444 15,665 14,025 11,707	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 ontained Met	Pb klb 76,300 70,470 66,876 58,949 46,588	Cu klb 21,321 19,838 17,759 14,926 13,070
1600 AuPr \$/oz 2000 1900 1800 1700 1600 AuPr \$/oz	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t	nd Undergr Au g/t 0.40 0.41 0.44 0.49 0.62 nd Undergr Au g/t	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infer Ag g/t	7red Mate Zn % 0.37 0.39 0.41 0.46 0.58 rred Mate Zn %	Pb % 0.15 0.15 0.16 0.19 0.23	Cu % 0.04 0.04 0.04 0.05 0.06		Au koz 334 316 301 255 207	Ag koz 17,191 16,444 15,665 14,025 11,707	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 ontained Met Zn klb	ral Pb klb 76,300 70,470 66,876 58,949 46,588 ral Pb klb	Cu klb 21,321 19,838 17,759 14,926 13,070
1600 AuPr \$/oz 2000 1900 1800 1700 1600 AuPr \$/oz 2000	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons 4,521	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t 56.98	nd Undergr Au g/t 0.40 0.41 0.44 0.49 0.62 nd Undergr Au g/t 0.59	round Infel Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infel Ag g/t 27.62	rred Mate Zn % 0.37 0.39 0.41 0.46 0.58 rred Mate Zn % 0.61	Pb % 0.15 0.15 0.16 0.23 Pb % 0.23	Cu % 0.04 0.04 0.05 0.06		Au koz 334 316 301 255 207 Au koz	Ag koz 17,191 16,444 15,665 14,025 11,707	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 Ontained Met Zn klb 58,910	ral Pb klb 76,300 70,470 66,876 58,949 46,588 ral Pb klb 18,627	Cu klb 21,321 19,838 17,759 14,926 13,070 Cu klb 5,267
1600 AuPr \$/oz 2000 1900 1800 1700 1600 AuPr \$/oz 2000 1900	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons 4,521 3,946	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t 56.98 54.97	nd Undergr Au g/t 0.40 0.41 0.44 0.62 nd Undergr Au g/t 0.59	round Infel Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infel Ag g/t 27.62 28.02	red Mate Zn % 0.37 0.39 0.41 0.46 0.58 red Mate Zn % 0.61 0.66	Pb % 0.15 0.16 0.19 0.23 Pb % 0.23	Cu % 0.04 0.04 0.05 0.06 Cu % 0.06		Au koz 334 316 301 255 207 Au koz 85 76	Ag koz 17,191 16,444 15,665 14,025 11,707 Co Ag koz 4,015 3,555	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 Ontained Met Zn klb 58,910 55,020	ral Pb klb 76,300 70,470 66,876 58,949 46,588 ral Pb klb 18,627 16,828	Cu klb 21,321 19,838 17,759 14,926 13,070 Cu klb 5,267 4,960
AuPr \$/oz 2000 1900 1800 1600 AuPr \$/oz 2000 1900 1800	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons 4,521 3,946 3,325	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t 56.98 54.97 52.96	nd Undergr Au g/t 0.40 0.41 0.44 0.62 nd Undergr Au g/t 0.59 0.60	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infer Ag g/t 27.62 28.02 28.57	red Mate Zn % 0.37 0.39 0.41 0.46 0.58 red Mate Zn % 0.61 0.66 0.71	Pb % 0.15 0.16 0.19 0.23 Pb % 0.23 Po 0.20 0.21	Cu % 0.04 0.04 0.05 0.06 Cu % 0.06 0.06		Au koz 334 316 301 255 207 Au koz 85 76 65	Ag koz 17,191 16,444 15,665 14,025 11,707 Co Ag koz 4,015 3,555 3,055	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 ontained Met Zn klb 58,910 55,020 49,963	ral Pb klb 76,300 70,470 66,876 58,949 46,588 ral Pb klb 18,627 16,828 15,032	Cu klb 21,321 19,838 17,759 14,926 13,070 Cu klb 5,267 4,960 4,545
AuPr \$/oz 2000 1900 1800 1600 AuPr \$/oz 2000 1900 1800 1700 1600	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons 4,521 3,946 3,325 2,866 2,208	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t 56.98 54.97 52.96 51.09	nd Undergr Au g/t 0.40 0.41 0.44 0.62 nd Undergr Au g/t 0.59 0.60 0.60 0.61	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infer Ag g/t 27.62 28.02 28.57 30.02 33.36	red Mate Zn % 0.37 0.39 0.41 0.46 0.58 red Mate Zn % 0.61 0.66 0.71 0.75	Pb % 0.15 0.16 0.19 0.23 Pb % 0.23 Pc	Cu % 0.04 0.04 0.05 0.06 Cu % 0.06 0.07 0.07		Au koz 334 316 301 255 207 Au koz 85 76 65 57	Co Ag koz 17,191 16,444 15,665 14,025 11,707 Co Ag koz 4,015 3,555 3,055 2,766 2,368	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 Ontained Met Zn klb 58,910 55,020 49,963 45,655 37,636	Pb klb 76,300 70,470 66,876 58,949 46,588 al Pb klb 18,627 16,828 15,032 13,624	Cu klb 21,321 19,838 17,759 14,926 13,070 Cu klb 5,267 4,960 4,545 3,926
AuPr \$/oz 2000 1900 1800 1600 AuPr \$/oz 2000 1900 1800 1700 1600	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons 4,521 3,946 3,325 2,866 2,208 rth and Sourth and Sourth Mode ktons	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t 56.98 54.97 52.96 51.09 51.23	nd Undergr Au g/t 0.40 0.41 0.44 0.62 nd Undergr Au g/t 0.59 0.60 0.60 0.61	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infer Ag g/t 27.62 28.02 28.57 30.02 33.36	red Mate Zn % 0.37 0.39 0.41 0.46 0.58 red Mate Zn % 0.61 0.66 0.71 0.75	Pb % 0.15 0.16 0.19 0.23 Pb % 0.23 Pc	Cu % 0.04 0.04 0.05 0.06 Cu % 0.06 0.07 0.07		Au koz 334 316 301 255 207 Au koz 85 76 65 57 46	Co Ag koz 17,191 16,444 15,665 14,025 11,707 Co Ag koz 4,015 3,555 3,055 2,766 2,368	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 Ontained Met Zn klb 58,910 55,020 49,963 45,655 37,636 Ontained Met	ral Pb klb 76,300 70,470 66,876 58,949 46,588 ral Pb klb 18,627 16,828 15,032 13,624 11,757	Cu klb 21,321 19,838 17,759 14,926 13,070 Cu klb 5,267 4,960 4,545 3,926 3,373
AuPr \$/oz 2000 1900 1800 1600 AuPr \$/oz 2000 1900 1800 1700 1600	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons 4,521 3,946 3,325 2,866 2,208	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t 56.98 54.97 52.96 51.09	nd Undergr Au g/t 0.40 0.41 0.44 0.62 nd Undergr Au g/t 0.59 0.60 0.60 0.61	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infer Ag g/t 27.62 28.02 28.57 30.02 33.36	red Mate Zn % 0.37 0.39 0.41 0.46 0.58 red Mate Zn % 0.61 0.66 0.71 0.75	Pb % 0.15 0.16 0.19 0.23 Pb % 0.23 Pc	Cu % 0.04 0.04 0.05 0.06 Cu % 0.06 0.07 0.07		Au koz 334 316 301 255 207 Au koz 85 76 65 57	Co Ag koz 17,191 16,444 15,665 14,025 11,707 Co Ag koz 4,015 3,555 3,055 2,766 2,368	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 Ontained Met Zn klb 58,910 55,020 49,963 45,655 37,636	Pb klb 76,300 70,470 66,876 58,949 46,588 al Pb klb 18,627 16,828 15,032 13,624	Cu klb 21,321 19,838 17,759 14,926 13,070 Cu klb 5,267 4,960 4,545 3,926
AuPr \$/oz 2000 1900 1800 1600 AuPr \$/oz 2000 1900 1800 1700 1600	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons 4,521 3,946 3,325 2,866 2,208 rth and Sourth and Sourth Mode ktons	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t 56.98 54.97 52.96 51.09 51.23	nd Undergr Au g/t 0.40 0.41 0.44 0.62 nd Undergr Au g/t 0.59 0.60 0.60 0.61 0.65	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infer Ag g/t 27.62 28.02 28.57 30.02 33.36	red Mate Zn % 0.37 0.39 0.41 0.46 0.58 red Mate Zn % 0.61 0.66 0.71 0.75 0.80	Pb % 0.15 0.16 0.19 0.23 Pb % 0.23 Poly of the poly of	Cu % 0.04 0.04 0.05 0.06 Cu % 0.06 0.07 0.07		Au koz 334 316 301 255 207 Au koz 85 76 65 57 46	Co Ag koz 17,191 16,444 15,665 14,025 11,707 Co Ag koz 4,015 3,555 3,055 2,766 2,368	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 Ontained Met Zn klb 58,910 55,020 49,963 45,655 37,636 Ontained Met	ral Pb klb 76,300 70,470 66,876 58,949 46,588 ral Pb klb 18,627 16,828 15,032 13,624 11,757	Cu klb 21,321 19,838 17,759 14,926 13,070 Cu klb 5,267 4,960 4,545 3,926 3,373
AuPr \$/oz 2000 1900 1800 1600 AuPr \$/oz 2000 1900 1800 1700 1600 Total No	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons 4,521 3,946 3,325 2,866 2,208 rth and South Mode ktons	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t 56.98 54.97 52.96 51.09 51.23 th Models O NSR \$/t	nd Undergr Au g/t 0.40 0.41 0.44 0.62 nd Undergr Au g/t 0.59 0.60 0.60 0.61 0.65	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infer Ag g/t 27.62 28.02 28.57 30.02 33.36	red Mate Zn % 0.37 0.39 0.41 0.46 0.58 red Mate Zn % 0.61 0.66 0.71 0.75 0.80	Pb % 0.15 0.16 0.19 0.23 Pb % 0.23 Prial Pb % 0.20 0.21 0.23 0.25 Ped Mate Pb %	Cu % 0.04 0.04 0.05 0.06 Cu % 0.06 0.07 0.07 cu %		Au koz 334 316 301 255 207 Au koz 85 76 65 57 46	Ag koz 17,191 16,444 15,665 14,025 11,707 Co Ag koz 4,015 3,555 3,055 2,766 2,368	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 Ontained Met Zn klb 58,910 55,020 49,963 45,655 37,636 Ontained Met Zn klb	Pb klb 76,300 70,470 66,876 58,949 46,588 al Pb klb 18,627 16,828 15,032 13,624 11,757	Cu klb 21,321 19,838 17,759 14,926 13,070 Cu klb 5,267 4,960 4,545 3,926 3,373 Cu klb
AuPr \$/oz 2000 1900 1800 1600 AuPr \$/oz 2000 1900 1800 1700 1600 Total No AuPr \$/oz 2000	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons 4,521 3,946 3,325 2,866 2,208 rth and South Mode ktons 30,688	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t 56.98 54.97 52.96 51.09 51.23 th Models O NSR \$/t 40.16	nd Undergr Au g/t 0.40 0.41 0.44 0.62 nd Undergr Au g/t 0.59 0.60 0.60 0.61 0.65 pen Pit and Au g/t 0.42	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infer Ag g/t 27.62 28.02 28.57 30.02 33.36 Undergro Ag g/t 21.49	red Mate Zn % 0.37 0.39 0.41 0.46 0.58 red Mate Zn % 0.61 0.66 0.71 0.75 0.80 und Infer Zn % 0.41	Pb % 0.15 0.16 0.19 0.23 Pb % 0.23 Prial Pb % 0.20 0.21 0.23 0.25 Ped Mate Pb % 0.15	Cu % 0.04 0.04 0.05 0.06 Cu % 0.06 0.07 0.07 cu % 0.07		Au koz 334 316 301 255 207 Au koz 85 76 65 57 46 Au koz	Ag koz 17,191 16,444 15,665 14,025 11,707 Co Ag koz 4,015 3,555 3,055 2,766 2,368 Co Ag koz	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 ontained Met Zn klb 58,910 55,020 49,963 45,655 37,636 ontained Met Zn klb 256,157	Pb klb 76,300 70,470 66,876 58,949 46,588 al Pb klb 18,627 16,828 15,032 13,624 11,757 al Pb klb 94,927	Cu klb 21,321 19,838 17,759 14,926 13,070 Cu klb 5,267 4,960 4,545 3,926 3,373 Cu klb 26,588
AuPr \$/oz 2000 1900 1800 1700 1600 AuPr \$/oz 2000 1900 1800 Total No: AuPr \$/oz 2000 1900 1900	9,717 South Mode ktons 26,167 23,820 21,392 16,149 10,443 North Mode ktons 4,521 3,946 3,325 2,866 2,208 rth and South Mode ktons 30,688 27,766	53.89 el Open Pit a NSR \$/t 37.26 36.69 36.29 39.43 48.05 el Open Pit a NSR \$/t 56.98 54.97 52.96 51.09 51.23 th Models O NSR \$/t 40.16 39.29	nd Undergr Au g/t 0.40 0.41 0.44 0.62 nd Undergr Au g/t 0.59 0.60 0.60 0.61 0.65 pen Pit and Au g/t 0.42	round Infer Ag g/t 20.43 21.47 22.78 27.01 34.87 round Infer Ag g/t 27.62 28.02 28.57 30.02 33.36 Undergro Ag g/t 21.49 22.40	red Mate Zn % 0.37 0.39 0.41 0.46 0.58 red Mate Zn % 0.61 0.66 0.71 0.75 0.80 und Infer Zn % 0.41 0.42	Pb % 0.15 0.16 0.19 0.23 Pb % 0.23 Pb % 0.19 0.20 0.21 0.23 0.25 red Mate Pb % 0.15 0.16	Cu % 0.04 0.05 0.06 Cu % 0.06 0.07 0.07 cu % 0.07 0.07		Au koz 334 316 301 255 207 Au koz 85 76 65 57 46 Au koz 419 392	Co Ag koz 17,191 16,444 15,665 14,025 11,707 Co Ag koz 4,015 3,555 3,055 2,766 2,368 Co Ag koz	ontained Met Zn klb 197,247 187,004 176,486 147,841 122,504 ontained Met Zn klb 58,910 55,020 49,963 45,655 37,636 ontained Met Zn klb 256,157 242,025	ral Pb klb 76,300 70,470 66,876 58,949 46,588 ral Pb klb 18,627 16,828 15,032 13,624 11,757 ral Pb klb 94,927 87,298	Cu klb 21,321 19,838 17,759 14,926 13,070 Cu klb 5,267 4,960 4,545 3,926 3,373 Cu klb 26,588 24,798
A	2000 1900 1800 1700 1600 LUPT \$/oz 2000 1900 1800 1700 1600 Total Nor LUPT \$/oz 2000 1900 1900 1900	2000 26,627 1900 24,552 1800 21,768 1700 16,486 1600 8,849 North Mode SuPr \$/oz ktons 2000 1,634 1900 1,388 1800 1,201 1700 1,041 1600 868 Total North and Sout SuPr \$/oz ktons 2000 28,261 1900 25,940	2000 26,627 40.57 1900 24,552 39.87 1800 21,768 39.81 1700 16,486 43.00 1600 8,849 53.85 North Model Open Pit at Aupr \$\frac{1}{2}\text{Vorter}\$ ktons NSR \$\frac{1}{2}\text{NS}\$ NSR \$\frac{1}{2}\text{Vorter}\$ 1,000 1,388 57.33 1800 1,201 56.55 1700 1,041 55.54 1600 868 54.24 Total North and South Models Open Pit at South Models Open Pit at South North South Nort	2000 26,627 40.57 0.40 1900 24,552 39.87 0.42 1800 21,768 39.81 0.44 1700 16,486 43.00 0.49 1600 8,849 53.85 0.65 North Model Open Pit and Undergrature \$\frac{1}{2}\$ ktons NSR \$\frac{1}{2}\$ Au g/t 2000 1,634 57.67 0.66 1900 1,388 57.33 0.71 1800 1,201 56.55 0.75 1700 1,041 55.54 0.80 1600 868 54.24 0.84 Total North and South Models Open Pit and aupr \$\frac{1}{2}\$ voz ktons NSR \$\frac{1}{2}\$ to a display	2000 26,627 40.57 0.40 25.20 1900 24,552 39.87 0.42 26.54 1800 21,768 39.81 0.44 28.61 1700 16,486 43.00 0.49 34.27 1600 8,849 53.85 0.65 44.70 North Model Open Pit and Underground Indicator (10.00 1) 1,634 57.67 0.66 23.98 1900 1,634 57.67 0.66 23.98 1900 1,388 57.33 0.71 24.17 1800 1,201 56.55 0.75 24.82 1700 1,041 55.54 0.80 25.74 1600 868 54.24 0.84 27.09 Total North and South Models Open Pit and Underground Indicator (10.00 1) 1,041 55.54 0.80 25.74 1600 868 54.24 0.84 27.09 Total North and South Models Open Pit and Underground Indicator (10.00 1) 1,041 55.54 0.80 25.74 1600 28,261 41.56 0.42 25.13 1900 25,940 40.81 0.44 26.41	2000 26,627 40.57 0.40 25.20 0.39 1900 24,552 39.87 0.42 26.54 0.40 1800 21,768 39.81 0.44 28.61 0.41 1700 16,486 43.00 0.49 34.27 0.46 1600 8,849 53.85 0.65 44.70 0.57 North Model Open Pit and Underground Indicated Mathematics supr \$\forall \text{oz} ktons NSR \$\forall \text{ Au g/t} Ag g/t Zn % 2000 1,634 57.67 0.66 23.98 0.51 1900 1,388 57.33 0.71 24.17 0.55 1800 1,201 56.55 0.75 24.82 0.57 1700 1,041 55.54 0.80 25.74 0.59 Total North and South Models Open Pit and Underground Indicated Mathematics suPr \$\forall colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6	2000 26,627 40.57 0.40 25.20 0.39 0.15 1900 24,552 39.87 0.42 26.54 0.40 0.15 1800 21,768 39.81 0.44 28.61 0.41 0.16 1700 16,486 43.00 0.49 34.27 0.46 0.19 1600 8,849 53.85 0.65 44.70 0.57 0.23 North Model Open Pit and Underground Indicated Material suPr \$/oz ktons NSR \$/t Au g/t Ag g/t Zn % Pb % 2000 1,634 57.67 0.66 23.98 0.51 0.20 1900 1,388 57.33 0.71 24.17 0.55 0.21 1800 1,201 56.55 0.75 24.82 0.57 0.23 1700 1,041 55.54 0.80 25.74 0.59 0.24 1600 868 54.24 0.84 27.09 0.59 0.25	2000 26,627 40.57 0.40 25.20 0.39 0.15 0.03 1900 24,552 39.87 0.42 26.54 0.40 0.15 0.03 1800 21,768 39.81 0.44 28.61 0.41 0.16 0.04 1700 16,486 43.00 0.49 34.27 0.46 0.19 0.04 1600 8,849 53.85 0.65 44.70 0.57 0.23 0.05 North Model Open Pit and Underground Indicated Material NuPr \$/oz ktons NSR \$/t Au g/t Ag g/t Zn % Pb % Cu % 2000 1,634 57.67 0.66 23.98 0.51 0.20 0.06 1900 1,388 57.33 0.71 24.17 0.55 0.21 0.07 1800 1,201 56.55 0.75 24.82 0.57 0.23 0.07 1700 1,041 55.54 0.80 25.74 0.59 0.24 0.08 1600 868 54.24 0.84 27.09 0.59 0.25 0.08 Total North and South Models Open Pit and Underground Indicated Material NuPr \$/oz ktons NSR \$/t Au g/t Ag g/t Zn % Pb % Cu % 2000 28,261 41.56 0.42 25.13 0.40 0.16 0.03 1900 25,940 40.81 0.44 26.41 0.41 0.16 0.03	2000 26,627 40.57 0.40 25.20 0.39 0.15 0.03	2000	2000 26,627 40.57 0.40 25.20 0.39 0.15 0.03 346 21,571 1900 24,552 39.87 0.42 26.54 0.40 0.15 0.03 334 20,947 1800 21,768 39.81 0.44 28.61 0.41 0.16 0.04 1700 16,486 43.00 0.49 34.27 0.46 0.19 0.04 262 18,166 1600 8,849 53.85 0.65 44.70 0.57 0.23 0.05 186 12,718	2000 26,627 40.57 0.40 25.20 0.39 0.15 0.03 346 21,571 213,306 1900 24,552 39.87 0.42 26.54 0.40 0.15 0.03 334 20,947 201,619 1800 21,768 39.81 0.44 28.61 0.41 0.16 0.04 310 20,024 184,665 1700 16,486 43.00 0.49 34.27 0.46 0.19 0.04 1600 8,849 53.85 0.65 44.70 0.57 0.23 0.05 186 12,718 101,919 1600 1,634 57.67 0.66 23.98 0.51 0.20 0.06 1,634 57.67 0.66 23.98 0.51 0.20 0.06 1,634 57.33 0.71 24.17 0.55 0.21 0.07 1800 1,201 56.55 0.75 24.82 0.57 0.23 0.07 1700 1,041 55.54 0.80 25.74 0.59 0.24 0.08 1600 868 54.24 0.84 27.09 0.59 0.25 0.08 1600 28,261 41.56 0.42 25.13 0.40 0.16 0.03 1600 25,940 40.81 0.44 26.41 0.41 0.16 0.03 1600 15 0.03 0.05 136 22,025 217,719 16,100 1,041 1,0	2000 26,627 40.57 0.40 25.20 0.39 0.15 0.03 346 21,571 213,306 83,022 1900 24,552 39.87 0.42 26.54 0.40 0.15 0.03 334 20,947 201,619 76,791 1800 21,768 39.81 0.44 28.61 0.41 0.16 0.04 310 20,024 184,665 72,682 1700 16,486 43.00 0.49 34.27 0.46 0.19 0.04 1600 8,849 53.85 0.65 44.70 0.57 0.23 0.05 186 12,718 101,919 40,351 40,400

^{*}Open Pit tonnages were tabulated at \$9.60/t NSR

The result of applying the input parameters in Table 14.12 and Table 14.13 to the Cristina block models at the metal prices of \$1700/oz Au, \$23.61/oz Ag, \$1.32/lb Zn, \$0.94/lb Pb and \$3.78/lb Cu. is the statement of Mineral Resources in Table 14.16 that reflects the project status as of 1 January 2023.

^{*}Underground Tonnages were tabulated as blocks above \$55.00/t NSR and touching at least 3 other blocks above same cutoff.

^{*}Zinc, Lead and Copper metal within "Oxide" material was not reported in contained metal.

Table 14.16: Detail of Mineral Resource Estimate for the Cristina Project 1 January 2023

	Zone	Redox	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %
	South	Oxide	2,048	30.55	0.41	40.40	0.28	0.13	0.02
l	Open Pit	Transition	2,257	38.08	0.40	31.50	0.29	0.13	0.03
İ		Sulfide	11,023	40.70	0.48	31.40	0.41	0.17	0.03
i		Total	15,328	38.96	0.46	32.62	0.37	0.16	0.03
j l	South	Oxide	1	85.27	1.99	3.40	0.06	0.02	0.01
	Under	Transition	4	73.70	1.02	41.00	0.74	0.27	0.05
	Ground	Sulfide	<u>1,153</u>	96.54	0.95	56.30	1.55	0.57	0.15
i I		Total	1,158	96.45	0.95	56.20	1.55	0.57	0.15
	South	Oxide	2,049	30.58	0.41	40.38	0.28	0.13	0.02
	Total	Transition	2,261	38.14	0.40	31.52	0.29	0.13	0.03
		Sulfide	12,176	45.99	0.52	33.76	0.52	0.21	0.04
<u>a</u> .		Total	16,486	43.00	0.49	34.27	0.46	0.19	0.04
Indicated Material	North	Oxide	122	19.66	0.26	26.40	0.20	0.08	0.04
ĭĕ	Open Pit	Transition	100	31.51	0.43	17.10	0.19	0.06	0.06
ted		Sulfide	<u>385</u>	31.88	0.38	24.20	0.23	0.10	0.03
ig l		Total	607	29.36	0.36	23.47	0.22	0.09	0.04
ے ا	North	Oxide	0	0.00	0.00	0.00	0.00	0.00	0.00
	Under	Transition	0	0.00	0.00	0.00	0.00	0.00	0.00
l	Ground	Sulfide	434	92.14	1.40	28.90	1.11	0.44	0.13
		Total	434	92.14	1.40	28.90	1.11	0.44	0.13
	North	Oxide	122	19.66	0.26	26.40	0.20	0.08	0.04
	Total	Transition	100	31.51	0.43	17.10	0.19	0.06	0.06
		Sulfide	<u>819</u>	63.81	0.92	26.69	0.70	0.28	0.08
		Total	1,041	55.54	0.80	25.74	0.59	0.24	0.08
	Total	Oxide	2,171	29.96	0.40	39.60	0.28	0.13	0.02
	Indicated	Transition	2,361	37.86	0.40	30.91	0.29	0.13	0.03
		Sulfide	12,995	47.11	0.55	33.31	0.53	0.21	0.04
İ		Total	17,527	43.74	0.51	33.77	0.47	0.19	0.04

Au koz Ag koz Zn klb Pb klb Cu kl 27 2,660 29 2,286 14,430 6,469 1,49 170 11,128 99,636 41,313 7,29 226 16,074 114,066 47,781 8,78 0 0 5 65 24 4 35 2,087 39,400 14,489 3,81 27 2,660 29 2,291 14,495 6,492 1,49 205 13,215 139,036 55,802 11,10 1 104 1 155 419 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 20 403	_
29 2,286 14,430 6,469 1,49 170 11,128 99,636 41,313 7,29 226 16,074 114,066 47,781 8,78 0 0 0 0 0 0 5 65 24 4 35 2,087 39,400 14,489 3,81 27 2,660 29 2,291 14,495 6,492 1,49 29 2,291 14,495 6,492 1,49 205 13,215 139,036 55,802 11,10 262 18,166 153,531 62,294 12,60 1 1 1 104 1 55 419 132 132 132 5 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 <td>ıb</td>	ıb
170 11,128 99,636 41,313 7,29 226 16,074 114,066 47,781 8,78 0 0 0 0 0 0 0 0 5 65 24 4 35 2,087 39,400 14,489 3,81 3,81 35 2,087 39,400 14,489 3,81 27 2,660 29 2,291 14,495 6,492 1,49 205 13,215 139,036 55,802 11,10 262 18,166 153,531 62,294 12,60 1 104 1 55 419 132 132 132 5 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 1 1 1 1 1 1 1 1 1 1 1	
226 16,074 114,066 47,781 8,78 0 0 0 5 65 24 4 35 2,087 39,400 14,489 3,81 27 2,660 29 2,291 14,495 6,492 1,49 205 13,215 139,036 55,802 11,10 262 18,166 153,531 62,294 12,60 1 1 104 1 55 419 132 132 5 387 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 <	3
0 0 0 0 4 4489 3,81 35 2,087 39,400 14,489 3,81 27 2,660 29 2,291 14,495 6,492 1,49 205 13,215 139,036 55,802 11,10 262 18,166 153,531 62,294 12,60 1 1 104 1 55 419 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 1 104 1 55 419 13 10,621 4,210 1,24 1 104 1 55 419 13 132 24 703 12,573 5,059 1,49	0
0 5 65 24 4 35 2,087 39,400 14,489 3,81 35 2,087 39,400 14,489 3,81 27 2,660 29 2,291 14,495 6,492 1,49 205 13,215 139,036 55,802 11,10 262 18,166 153,531 62,294 12,60 1 104 1 55 419 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	3
35 2,087 39,400 14,489 3,81 35 2,087 39,400 14,489 3,81 27 2,660 29 2,291 14,495 6,492 1,49 205 13,215 139,036 55,802 11,10 12,60 1 104 1 55 419 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	
35 2,087 39,400 14,489 3,81 27 2,660 29 2,291 14,495 6,492 1,49 205 13,215 139,036 55,802 11,10 12,60 1 104 1 55 419 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	
27 2,660 29 2,291 14,495 6,492 1,49 205 13,215 139,036 55,802 11,10 262 18,166 153,531 62,294 12,60 1 104 1 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	3
29 2,291 14,495 6,492 1,49 205 13,215 139,036 55,802 11,10 262 18,166 153,531 62,294 12,60 1 104 132 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 1 55 419 132 132 232 24 703 12,573 5,059 1,49	3
205 13,215 139,036 55,802 11,10 262 18,166 153,531 62,294 12,60 1 104 1 55 419 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	
262 18,166 153,531 62,294 12,60 1 104 1 55 419 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	7
1 104 1 55 419 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	<u>)3</u>
1 55 419 132 132 5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49)1
5 300 1,952 849 255 7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	
7 458 2,371 981 387 20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	!
20 403 10,621 4,210 1,24 20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	<u>;</u>
20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	'
20 403 10,621 4,210 1,24 1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	
1 104 1 55 419 132 132 24 703 12,573 5,059 1,49	4
1 55 419 132 132 24 703 12,573 5,059 1,49	4
<u>24</u> <u>703</u> <u>12,573</u> <u>5,059</u> <u>1,49</u>	
	2
1 37 004 43,003 5404 4.63	8
27 861 12,992 5,191 1,63	1
28 2,764	
31 2,346 14,914 6,625 1,62	9
<u>230</u> <u>13,918</u> <u>151,609</u> <u>60,860</u> <u>12,60</u>)2
288 19,028 166,523 67,485 14,23	31

	Zone	Redox	ktons	NSR \$/t	Au g/t	Ag g/t	Zn %	Pb %	Cu %
	South	Oxide	3,229	26.63	0.39	31.30	0.20	0.10	0.02
	Open Pit	Transition	3,244	26.67	0.33	18.60	0.23	0.10	0.03
		Sulfide	<u>7,111</u>	<u>33.15</u>	0.45	21.00	0.34	0.14	0.04
		Total	13,584	30.05	0.41	22.88	0.28	0.12	0.03
	South	Oxide	87	78.44	1.13	44.70	0.07	0.14	0.01
	Under	Transition	23	78.95	1.30	35.00	0.30	0.16	0.03
	Ground	Sulfide	<u>2,455</u>	<u>89.55</u>	0.92	49.20	1.44	0.55	0.12
		Total	2,565	89.08	0.93	48.92	1.38	0.53	0.12
	South	Oxide	3,316	27.99	0.41	31.65	0.20	0.10	0.02
	Total	Transition	3,267	27.04	0.34	18.72	0.23	0.10	0.03
	İ	Sulfide	9,566	47.62	0.57	28.24	0.62	0.25	0.06
a l	l	Total	16,149	39.43	0.49	27.01	0.46	0.19	0.05
Inferred Material	North	Oxide	387	16.47	0.25	18.60	0.23	0.08	0.03
Ψa	Open Pit	Transition	343	27.22	0.32	21.00	0.29	0.10	0.04
pe.	İ	Sulfide	<u>705</u>	30.92	0.50	14.80	0.31	0.08	0.03
ferr		Total	1,435	26.14	0.39	17.31	0.28	0.08	0.03
드	North	Oxide	0	0.00	0.00	0.00	0.00	0.00	0.00
	Under	Transition	13	61.79	0.63	17.70	1.76	0.20	0.11
	Ground	Sulfide	1,418	76.25	0.84	43.00	1.22	0.37	0.10
		Total	1,431	76.12	0.84	42.77	1.22	0.37	0.10
	North	Oxide	387	16.47	0.25	18.60	0.23	0.08	0.03
	Total	Transition	356	28.48	0.33	20.88	0.34	0.10	0.04
		Sulfide	2,123	61.20	0.73	33.64	0.92	0.27	0.08
l	Total	Total	2,866	51.09	0.61	30.02	0.75	0.23	0.07
	Total	Oxide	3,703	26.79	0.39	30.29	0.20	0.10	0.02
İ	Inferred	Transition	3,623	27.18	0.34	18.93	0.24	0.10	0.03
		Sulfide	11,689	50.09	0.60	29.22	0.68	0.25	0.06
1	1	Total	19,015	41.19	0.51	27.47	0.50	0.19	0.05

	1		1 4 - 4 - I	
Au koz	Ag koz	ed Contained Zn klb	Pb klb	Cu klb
40		ZII KIU	FUND	CU KID
	3,249	46.440	7.450	2 4 4 5
34	1,940	16,449	7,152	2,146
<u>103</u>	<u>4,801</u>	53,302	21,948	<u>6,271</u>
178	9,990	69,751	29,100	8,416
3	125			
1	26	152	81	15
<u>73</u>	3,883	77,938	29,768	<u>6,495</u>
77	4,034	78,090	29,849	6,510
44	3,374			
35	1,966	16,601	7,233	2,161
<u>175</u>	8,684	131,240	51,716	12,766
255	14,025	147,841	58,949	14,926
3	231			
4	232	2,193	756	302
<u>11</u>	335	4,818	1,243	466
18	798	7,011	2,000	769
0	7	504	57	32
38	1,960	38,139	11,567	3,126
38	1,960	38,139	11,567	3,126
3	231			
4	239	2,697	814	334
<u>50</u>	2,296	42,957	12,810	3,592
57	2,766	45,655	13,624	3,926
47	3,606			
39	2,205	19,299	8,046	2,495
225	10,980	174,197	64,526	16,358
311	16,791	193,496	72,572	18,853

^{*}Open Pit tonnages were tabulated at \$9.60/t NSR

^{*}Underground Tonnages were tabulated as blocks above \$55.00/t NSR and touching at least 3 other blocks above same cutoff.

 $[\]hbox{*Zinc, Lead and Copper metal within "Oxide" material was not reported in contained metal.}$

^{*}The Qualified Person for the Mineral Resource is Jacob Richey

^{*}Mineral Resource is compliant with CIM standards

^{*}Metal Prices used: \$1700/oz Au, \$23.61/oz Ag, \$1.32/lb Zn, \$0.94/lb Pb and \$3.78/lb Cu

^{*}The South Resource Pit Shell Contains 201,610 ktons of waste at a 7.0:1 Stripping Ratio

^{*}The North Resource Pit Shell Contains 7,824 ktons of waste at a 3.8:1 Stripping Ratio

 $[*]ktons \ are \ metric \ tonnes; \ koz \ are \ 1,000 \ troy \ ounces; \ klbs \ are \ 1,000 \ imperial \ pounds; \ g/t \ are \ grams \ per \ metric \ tonnes$

^{*}Inputs to pit optimization in Tables 14.12 and 14.13

The qualified person for the Mineral Resource is Jacob Richey of IMC. The Mineral Resource could change as additional drilling is completed or as additional process recovery information becomes available. Changes to the geological interpretation or additional geotechnical investigation could affect the Mineral Resource. Metal prices and operating costs could materially change the resources in either a positive or negative way.

1	5	Minera	Reserve	Estimates

There are no mineral reserves.

16 Mining Me	eτn	oas
--------------	-----	-----

17	Recovery	Methods
----	----------	---------

18 Project Infrastructure	18	Pro	iect	Infra	str	uctur	·e
---------------------------	----	-----	------	-------	-----	-------	----

19	Market	Studies	and C	ontracts

20	Environment Studies,	Permitting and Soc	ial or Community	Impact
Doe	es not apply to this repo	ort.		

21 (Capital	and	Operating	Costs
------	---------	-----	-----------	-------

22	Econo	mic	Anal	vsis

23 Adjacent Properties

There are no adjacent properties to report on.

24	Other	Relevant	Data and	Information
----	-------	----------	----------	-------------

There is no relevant information to report.

25 Interpretations and Conclusions

This Technical Report presents a maiden Mineral Resource estimate for the Cristina property located in the Guadalupe y Calvo municipality of Chihuahua Mexico. The estimation of a Mineral Resource indicates that there is mineralization with reasonable prospects for eventual economic extraction. There are opportunities for bulk surface mining methods and also small tonnage underground mining methods.

The Mineral Resource could change as additional drilling is completed or as additional process recovery information becomes available. Changes to the geological interpretation or additional geotechnical investigation could affect the Mineral Resource. Metal prices and operating costs could materially change the resources in either a positive or negative way.

Modern drilling began at the Cristina property in 2010 and the most recent drilling was completed by TCP1 in 2022. 70,187 meters of drilling have been completed on the property, 40,586 of those meters being completed by TCP1 since 2018.

The Cristina deposit is low sulfidation epithermal to mesothermal with mineralization occurring in breccias, veining and stockwork along E-W and NE-SW structures. The structures are open at depth in most areas. There is potential to add Mineral Resources along strike of the identified mineralized structures. The land package (including the claims still in the application process) controlled by Criscora is large and the only exploration conducted so far is the exploration in the immediate area of the Cristina deposit.

Metal Price inputs to the Resource definition were appropriate and were: \$1700/oz Au, \$23.61/oz Ag, \$1.32/lb Zn, \$0.94/lb Pb and \$3.78/lb Cu. All of these are below the 3 year backwards average (From November 2023) of the individual metal prices with the exception of silver. The three year backward average silver price is \$23.42/oz or .9% below the price used for Resource definition.

Additional metallurgy work needs to be completed. SGS recommended locked cycle flotation testing on the sequential Cu-Pb-Zn flowsheet once more material is available. Testing that has been completed showed good separation and recovery of base metals. The average head grade of the Resource estimate is lower than the composite that was used for metallurgical testing. Additional variability testing should be completed to confirm performance at lower grades and also the performance of transitional material should be evaluated.

48.5% of the gold and 21.9% of the silver was expected to report to a pyrite concentrate. Much of which is expected to be refractory. For Resource definition, the pyrite concentrate was assumed to be saleable. Additional work needs to be completed to determine if:

there is a market for the pyrite concentrate or

if the gold and silver in the pyrite concentrate can be forced to report to one of the other concentrates or

if there is an opportunity to recover the gold and silver from the pyrite concentrate on site by leaching after additional grinding or after an oxidation process.

26 Recommendations

IMC recommends that exploration and in-fill drilling be continued. The veins are open at depth in most areas. There is potential to add Mineral Resources along strike of the identified mineralized structures.

Additional lock cycle testing should be completed to confirm the flowsheet design. Additional work should be completed to address the gold and silver that reports to the pyrite concentrate. This would include additional investigation on the leaching of gold and silver from the pyrite concentrate or assessing the salability of the pyrite concentrate. Metallurgical recoveries on transition and oxide material should be investigated.

Phase 1: Drilling would attempt to convert the highest-grade inferred resource blocks to indicated resources and extend higher grade zones at depth. Material from new drill hole samples could also be used for additional metallurgical testing.

Phase 2: Depending on the results obtained from the execution of the first phase, further reporting may be necessary in the case that the results are material to the Project. An updated Resource estimate and technical report would be issued.

Table 26.1: Cost Estimate of Recommended Work Programs

Phase 1 \$CDN				
Drilling ~3,000m:	600,000			
Assays:	100,000			
Metallurgical test Program:	100,000			
	800,000			
Phase 2 \$CDN				
Updated Technical Report:	75,000			

TCP1 should consider assaying gold using an atomic adsorption finish in place of a gravimetric finish.

27 References

Baranjas, Arturo Martin, December 2014, "The Geological Foundations of the Gulf of California Region." Conservation Science in Mexico's Northwest Ecosystem Status Trends in the Gulf of California, Edited by: Wehnke, Lar-Lara, Alvarez-Borrego, Ezcurra, University of California, Riverside

Ferrari, Luca, 2005, Published in: BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA VOLUMEN CONMEMORATIVO DEL CENTENARIO TEMAS SELECTOS DE LA GEOLOGÍA MEXICANA TOMO LVII, NÚM. 3, "Magmatismo y tectónica en la Sierra Madre Occidental y su relación con la evolución de la margen occidental de Norteamérica"

O'Flaherty, Daniel, 21 September 2020, Maverix Metals Inc. Press Release, "MAVERIX TO ACQUIRE GOLD ROYALTY PORTFOLIO FROM NEWMONT"

Ronkos, Charlie, Undated, "Cristina Project Executive Summary"

SEMARNAT, 9 July 2018, "RESOLUTIVO IP EXPLORACION MINERA CRISTINA CRISCORA"

SGS Vancouver, 12 July 2021, Internal Report: "An Investigation into THE MINERALOGY AND FLOTATION ON SAMPLES FROM THE CRISTINA DEPOSIT"

Weed, Walter, 31 January 1927, "Report of the Guadalupe and Fortuna Mines La Cumbre, Chihuahua, MX"

Wood, John, 9 September 2010, Memorandum "Cristina Exploration Program 2010-2011"

CERTIFICATE OF QUALIFIED PERSON

I, Jacob W. Richey, P.E. do hereby certify that:

1. I am currently employed as a Senior Mining Engineer by:

Independent Mining Consultants, Inc. 3560 E. Gas Road Tucson, Arizona, USA 85714

- I graduated with the following degrees from the Colorado School of Mines.
 Bachelors of Science, Mining Engineering 2009
- I am a Registered Professional Mining Engineer in the State of Arizona USA. Registration # 64139
- 4. I have worked as a mining engineer for more than 12 years. I have been involved with the preparation of mineral resources, mineral reserves, and mine plans for multiple hard rock metal projects over that time.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI43-101.
- I have read NI 43-101 and Form 43-101F1 and have prepared the Technical Report in compliance with NI 43-101 and Form 43-101F1.
- I am responsible for all sections of the Technical Report titled "Technical Report on the Mineral Resource for the Cristina Project" with an effective date of 1 January 2023.
- I visited the Cristina Project site on 23-24 February 2022 during which I reviewed core
 logging, sampling, cutting and storage practices, toured the property viewing drill hole pads
 and outcropping geology, and met with personnel responsible for geology work at site.
- 9. This Author has not previously worked at the Cristina Project.
- 10. As of the date hereof, to the best of my knowledge, information, and belief, the Technical Report contains all the scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 11. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

- I am independent of the Company (Atacama) and Target (TCP1) applying the definition in Section 1.5 of NI 43-101.
- 13. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Dated: 30 November 2023

Signed and Sealed

signed "Jacob W. Richey"

Jacob W. Richey Professional Mining Engineer AZ #64139