

NI 43-101 Technical Report for the Preliminary Economic Assessment on the Cerro Caliche Project, Sonora, Mexico

Effective Date: August 28, 2023 Report Date: October 10, 2023

Prepared By: David J. Salari, P. Eng. William J. Lewis, P.Geo. Kerrine Azougarh, P.Eng. Christopher Jacobs, CEng., MIMMM, MBA Scott Burkett, BSc, SME-RM Douglas Reid, P. Eng.

SONORO GOLD CORP. 2489 Bellevue Ave., Suite 300, West Vancouver, British Columbia, Canada, V7V 1E1

Table of Contents

1.0 9	5UMMARY	1
1.1	INTRODUCTION	1
1.2	PROPERTY DESCRIPTION, LOCATION AND OWNERSHIP	2
1.3	ACCESSIBILITY, CLIMATE, PHYSIOGRAPHY, LOCAL RESOURCES AND INFRASTRUCTURE	2
1.3.	1 Accessibility	2
1.3.	2 Climate	2
1.3.	3 Physiography	3
1.3.	4 Local Resources and Infrastructure	3
1.4	HISTORY	3
1.5	GEOLOGICAL SETTING AND MINERALIZATION	4
1.5.	1 Regional Geology	4
1.5.	2 Property Geology	5
1.5.	3 Mineralization	5
1.6	EXPLORATION PROGRAMS	6
1.6.	1 Exploration	6
1.6.	2 Drilling	7
1.7	METALLURGICAL TESTWORK	7
1.7.	1 Interminera Metallurgical Program	8
1.7.	2 McClelland Metallurgical Program	9
1.8	MINERAL RESOURCE ESTIMATE 1	.0
1.9	MINING, PROCESSING AND INFRASTRUCTURE1	.1
1.9.	1 Mining1	.1
1.9.	2 Processing	.5
1.9.	3 Infrastructure	.5
1.10	ECONOMIC ANALYSIS1	.5
1.10	0.1 Macro-Economic Assumptions 1	.6
1.10	0.2 Results of the Economic Analysis1	.6
1.10	0.3 Sensitivity Study1	.9
1.11	CONCLUSIONS AND RECOMMENDATIONS 2	0
1.1	1.1 Mineral Resource Estimation Conclusions2	0
1.1	1.2 Budget for Further Exploration	0
1.1	1.3 Recommendations	1
20 1	NTRODUCTION	1
2.0 I		2
2.1		.Z
2.2	UNITS AND CURRENCY	ב. כו
2.5	UNITS AND CORRENCT	.၁
3.0 F	RELIANCE ON OTHER EXPERTS2	7
4.0 F	PROPERTY DESCRIPTION AND LOCATION2	8
4.1	PROPERTY LOCATION	8
4.2	PROPERTY DESCRIPTION AND OWNERSHIP2	9
4.2.	1 Option Agreements	1

4.	2.2 Surface Rights	
4.3	PERMITTING AND ENVIRONMENTAL	
4.	3.1 Environmental Liabilities	
4.4	OP COMMENTS	
	t	
5.0	ACCESIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGI	RAPHY37
5.1	CLIMATE AND PHYSIOGRAPHY	
5.	1.1 Climate	
5.	1.2 Physiography	
5.2	LOCAL RESOURCES AND INFRASTRUCTURE	40
6.0	HISTORY	/1
0.0		
6.1		
6.2	PRIOR OWNERSHIP AND OWNERSHIP CHANGES	
6.3	PROJECT HISTORICAL EXPLORATION AND DEVELOPMENT RESULTS	
6.	3.1 Cambior Inc. Exploration (1990s)	44
6.	3.2 Sidney Mining and Exploration, Exploration (2000s)	44
6.	3.3 Corex Exploration (2007 to 2008)	45
6.	3.4 Paget Southern Resources, Exploration (2011)	
6.	3.5 Sonoro Gold Corp. (2017 to Present)	45
6.4	HISTORICAL RESOURCE ESTIMATE	
6.5	HISTORICAL MINING AND PRODUCTION	
7.0	GEOLOGICAL SETTING AND MINERALIZATION	47
7.0 7.1	GEOLOGICAL SETTING AND MINERALIZATION	47 47
7.0 7.1 7.2	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY	47 47 47
7.0 7.1 7.2 7.3	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION	47 47 47 49
7.0 7.1 7.2 7.3 7.4	GEOLOGICAL SETTING AND MINERALIZATION	47 47 47 49 50
7.0 7.1 7.2 7.3 7.4 7.5	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING AI TERATION	47 47 47 47 49 50 51
7.0 7.1 7.2 7.3 7.4 7.5 7.6	GEOLOGICAL SETTING AND MINERALIZATION	47 47 47 49 50 51 52
7.0 7.1 7.2 7.3 7.4 7.5 7.6	GEOLOGICAL SETTING AND MINERALIZATION	47 47 47 49 50 51 52 53
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.	GEOLOGICAL SETTING AND MINERALIZATION	47 47 47 49 50 51 52 53 52
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7.	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING ALTERATION SIGNIFICANT MINERALIZED ZONES 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista) 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos)	47 47 47 49 50 50 51 52 53 53 53
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7.	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING ALTERATION SIGNIFICANT MINERALIZED ZONES 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista) 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos) 6.3 Cabeza Blanca, Guadalupe, and El Colorado	47 47 47 49 50 51 52 53 53 53 54
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7. 7. 7.	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING ALTERATION SIGNIFICANT MINERALIZED ZONES 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista) 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos) 6.3 Cabeza Blanca, Guadalupe, and El Colorado 6.4 La Española Zone	47 47 47 49 50 51 52 53 53 53 53 54 56
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7. 7. 7. 8.0	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING ALTERATION SIGNIFICANT MINERALIZED ZONES 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista) 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos) 6.3 Cabeza Blanca, Guadalupe, and El Colorado 6.4 La Española Zone	47 47 47 49 50 51 51 52 53 53 53 53 53 53 54 56 57
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7. 7. 7. 8.0 8.1	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY. PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING ALTERATION. SIGNIFICANT MINERALIZED ZONES. 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista). 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos). 6.3 Cabeza Blanca, Guadalupe, and El Colorado. 6.4 La Española Zone DEPOSIT TYPES GEOLOGICAL DEPOSIT MODEL	47 47 47 49 50 51 51 52 53 53 53 53 53 53 53 54 56 57
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7. 7. 8.0 8.1 8.2	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY. PROPERTY GEOLOGY. MINERALIZATION STRUCTURAL SETTING ALTERATION SIGNIFICANT MINERALIZED ZONES. 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista). 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos). 6.3 Cabeza Blanca, Guadalupe, and El Colorado. 6.4 La Española Zone GEOLOGICAL DEPOSIT MODEL QP COMMENTS.	47 47 47 49 50 51 51 52 53 53 53 53 53 53 53 53 53 54 56 57 58
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7. 7. 8.0 8.1 8.2	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING ALTERATION SIGNIFICANT MINERALIZED ZONES 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista) 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos) 6.3 Cabeza Blanca, Guadalupe, and El Colorado 6.4 La Española Zone DEPOSIT TYPES GEOLOGICAL DEPOSIT MODEL QP COMMENTS. EXPLORATION	47 47 47 49 50 51 52 53 53 53 53 54 56 57 57 58 58
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7. 7. 8.0 8.1 8.2 9.0	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING ALTERATION SIGNIFICANT MINERALIZED ZONES 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista) 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos) 6.3 Cabeza Blanca, Guadalupe, and El Colorado 6.4 La Española Zone DEPOSIT TYPES GEOLOGICAL DEPOSIT MODEL QP COMMENTS HISTORICAL EXPLORATION	
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7. 7. 8.0 8.1 8.2 9.0 9.1	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING ALTERATION SIGNIFICANT MINERALIZED ZONES 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista) 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos) 6.3 Cabeza Blanca, Guadalupe, and El Colorado 6.4 La Española Zone DEPOSIT TYPES GEOLOGICAL DEPOSIT MODEL QP COMMENTS EXPLORATION HISTORICAL EXPLORATION SONOPO EXPLOPATION	
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7. 7. 7. 8.0 8.1 8.2 9.0 9.1 9.2	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING ALTERATION SIGNIFICANT MINERALIZED ZONES 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista) 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos) 6.3 Cabeza Blanca, Guadalupe, and El Colorado 6.4 La Española Zone DEPOSIT TYPES GEOLOGICAL DEPOSIT MODEL QP COMMENTS QP COMMENTS EXPLORATION HISTORICAL EXPLORATION SONORO EXPLORATION SONORO EXPLORATION	
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7. 7. 7. 8.0 8.1 8.2 9.0 9.1 9.2 9.3	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY PROPERTY GEOLOGY MINERALIZATION STRUCTURAL SETTING ALTERATION SIGNIFICANT MINERALIZED ZONES 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista) 6.2 Abejas Zone (incl. Cuervos, Boludito, & Buena Vista) 6.3 Cabeza Blanca, Guadalupe, and El Colorado 6.4 La Española Zone DEPOSIT TYPES GEOLOGICAL DEPOSIT MODEL QP COMMENTS EXPLORATION HISTORICAL EXPLORATION SONORO EXPLORATION SIGNIFICANT RESULTS AND INTERPRETATION OD COMMENTS	
7.0 7.1 7.2 7.3 7.4 7.5 7.6 7. 7. 7. 7. 8.0 8.1 8.2 9.0 9.1 9.2 9.3 9.4	GEOLOGICAL SETTING AND MINERALIZATION REGIONAL GEOLOGY. PROPERTY GEOLOGY. MINERALIZATION STRUCTURAL SETTING ALTERATION. SIGNIFICANT MINERALIZED ZONES. 6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista). 6.2 Abejas Zone (incl. Veta del Oro & Rincon with Chinos NW & Chinos Altos). 6.3 Cabeza Blanca, Guadalupe, and El Colorado. 6.4 La Española Zone DEPOSIT TYPES GEOLOGICAL DEPOSIT MODEL. QP COMMENTS. EXPLORATION HISTORICAL EXPLORATION SONORO EXPLORATION SIGNIFICANT RESULTS AND INTERPRETATION QP COMMENTS.	47 47 47 49 50 51 52 53 53 53 53 54 56 57 57 58 57 58 59 59 59 59 59 59 63 64

10.1	TYPE AND EXTENT	65
10.1	.1 Historical Drilling (Prior to 2018)	
10.1	.2 Sonoro Drilling (2018 to Present)	65
10.2	PROCEDURES	
10.2	.1 Historical Drilling	
10.2	.2 Sonoro Drilling	67
10.3	RECOVERY	
10.4	SAMPLE LENGTH/TRUE THICKNESS	
10.5	SUMMARY OF DRILL INTERCEPTS	74
11.0 S	AMPLE PREPARATION. ANALYSES AND SECURITY	
11.1	SECURITY MEASURES	
11.1	.1 Historical Data	
11.1	2 Sonoro	
11.2	SAMPLE PREPARATION FOR ANALYSIS	
11.2	1 Historical Data	
11.2	.2 Sonoro	
11.3	SAMPLE ANALYSIS	
11.3	.1 Historical Data	
11.3	2 Sonoro	
11.4	OUALITY ASSURANCE/OUALITY CONTROL PROCEDURES	
11.4	1 Historical Data	
11.4	2 Sonoro	
11.4	- CRMs	
11.4	4 Duplicates	
11.4	5 Actions	
11.4	6 Results	131
11.5	OPINION ON ADEQUACY	
12.0 D	ATA VERIFICATION	
12.1	PROCEDURES	
12.2	VERIFICATION OF DATABASE	
12.3	LIMITATIONS	
12.4	OPINION ON DATA ADEQUACY	
13.0 M	IINERAL PROCESSING AND METALLURGICAL TESTING	
13.1	METALLURGICAL TEST PROGRAMS	
13.1	.1 Interminera Metallurgical Program	
13.1	.2 McClelland Metallurgical Program	
14.0		
14.0 M	IINEKAL RESUURCE ESTIMATES	
14.1		
14.2		
14.3	ASSAY COMPOSITING AND CAPPING ANALYSIS	
14.3	.1 Outliers and Capping Analysis	
14.4	UENSITY	168

14 5			100
14.5		IUGRAM ANALYSIS AND MUDELLING	
14.0	ECT		172
14.7 1/ 8			17Z
14.0	R 1	Visual Comparison	
14.0	9.1 R 7	Global Bias	
14.0	9.2 R R	Swath Plots	
14.9	8.4	Change of Support	182
14.9	RFS	OURCE CLASSIFICATION	183
14 10	MIN	FRAL RESOURCE STATEMENT	185
14.11	MIN	ERAL RESOURCE SENSITIVITY	
150 1			100
15.0 1	MINER	AL RESERVE ESTIMATES	
16.0 N	MININ	G METHODS	
16.1	OPE	N PIT MINING	190
16.1	1.1	Mining Battery Limits	190
16.1	1.2	Open Pit Mining Method	190
16.1	1.3	Mining Fleet	191
16.1	1.4	Production Requirements and Parameters	191
16.1	1.5	Time Allocation	193
16.1	1.6	Unit Rates	193
16.1	1.7	General Arrangements for Mining	194
16.2	OPE	N PIT OPTIMIZATION	194
16.2	2.1	Optimization Parameters	194
16.2	2.2	Optimization Results	195
16.2	2.3	Selected Optimized Pit Shells	197
16.3	OPE	N PIT DESIGN PARAMETERS	197
16.3	3.1	Pit Designs	199
16.3	3.2	Pushbacks	201
16.4	MIN	ING PRODUCTION SCHEDULE	
16.4	4.1	Mine Plan Sequence	
16.5	MIN	ING EQUIPMENT FLEET	
16.5	5.1	Major Mine Equipment Operating Parameters	
16.	5.2	Loading	
16.5	5.3	Haulage	
16.	5.4	Mine Support	
16.	5.5	Haulage Distance	
16.5	5.6	Drilling and Blasting	
16.6	OVE	RALL ESTIMATED MOBILE FLEET	
16.7	MIN	ING PERSONNEL REQUIREMENTS	
16.8	WAS	TE ROCK AND TAILINGS	
16.8	5.T	waste Rock Storage and Management Facility	
16.9	MIN	ING UPERATING CUSTS	
16.10	MEI		
16.11	GEN	EKAL AKKANGEMEN I	

17.0	RECOV	ERY METHODS	213
17.1	SUM	MARY	213
17.2	PLAN	IT DESIGN	216
17.	2.1	Design Criteria	216
17.	2.2	Operating Schedule and Availability	216
17.3	12,00	00 T/D PROCESS PLANT DESCRIPTION	217
17.	3.1	Primary Crushing Circuit	217
17.	3.2	Primary Crushed Mineralized Material Stockpile and Reclaim	217
17.	3.3	Secondary and Tertiary Crushing Circuit	217
17.	3.4	Heap Leach Pad System and Solution Distribution	218
17.	3.5	Carbon In Columns (CIC) Adsorption Circuit	219
17.	3.6	Carbon Forwarding and Recovery Circuit	219
17.	3.7	Reagent Handling and Storage	219
17.	3.8	Assay and Metallurgical Laboratory	220
17.	3.9	Water Supply	220
17.	1.1	Air Supply	220
10.0			~~~
18.0	PROJE		221
18.1	PLAP	INED INFRASTRUCTURE	221
18.2	WAI		223
18.3	ELEC	TRICAL POWER AND ON-SITE DISTRIBUTION	224
19.0	MARKE	T STUDIES AND CONTRACTS	225
19.1	MAR	KET AND MARKET STUDIES	225
19.2	CON	TRACTS	226
20.0		NMENTAL STUDIES, DEDMITTING AND SOCIAL OD COMMUNITY IMDACT	227
20.0		RONMENTAL STODIES, PERMITTING AND SOCIAL OR COMMONITTIMPACT	····· 221
20.1	1 1	Mining Law and Regulations	221
20.	1.1	General Environmental Laws and Regulations	221
20.	1.2	Regulations Specific to Gold and Silver Mining Projects	221 228
20.	1.5	PROFEPA "Clean Industry"	220
20.	15	Mining Waste	
20.	1.5	Wastewater	220
20.	17	Hazardous and Non-Hazardous Waste Management	230
20.	1.8	Other Laws and Regulations	
20.	19	Surface Land	
20.	1 10	Environmental Regulatory Conditions	
20.2	FNVI	RONMENTAL STUDIES PERMITTING AND SOCIAL IMPACT	236
20.2	21	Environmental Studies Baseline Studies and Background Information	
20.	2.1	Surface Access	
20. 20	2.3	Air and Noise Emissions	272 747
20.	2.0		
21.0	САРІТА	L AND OPERATING COSTS	243
21.1	CAPI	TAL COSTS	243
21.	1.1	Open Pit Mining Capital Cost	243

2	1.1.2	Process Plant Equipment Costs	244
2	1.1.3	Process Plant Direct Construction Costs	244
2	1.1.4	Process Plant Indirect Costs	244
2	1.1.5	Process Plant Capital Cost Estimate	244
2	1.1.6	Infrastructure Capital Costs	245
21.2	OPE	RATING COSTS	245
2	1.2.1	Labour	246
2	1.2.2	Reagents	247
2	1.2.3	Power	247
21.3	REC	LAMATION AND CLOSURE COSTS	247
22.0	FCON	OMIC ANALYSIS	
22.0	CAL	ΙΤΙΟΝΑΡΥ STATEMENT	249
22.1			210
22.2	. ΜΔ(PO-FCONOMIC ASSUMPTIONS	250
22.0	, 1	Exchange Rate and Inflation	250
2	2.3.1	Weighted Average Cost of Capital	250
2	2.J.Z 7	Royalty and Tax Regime	250
2	2.3.3	Expected Metal Prices	
∠ >> ∕	2.3. 4 TEC		
- <u>۲</u> ۲۰۲	7 / 1	Production Schedule	
2	2.4.1 		
22.5) JLIN 251	Cold and Silver Price Sensitivity	230
2	2.J.I 2.5.2	Operating and Capital Cost Sensitivity	231
Ζ.	2.J.Z		ZJ1
23.0	ADJAC	ENT PROPERTIES	258
24.0	OTHE	R RELEVANT DATA AND INFORMATION	
24.1	. PRC	DJECT RISKS AND OPPORTUNITIES	
2	4.1.1	Project Risks	
2	4.1.2	Project Opportunities	
25.0	INTER	PRETATION AND CONCLUSIONS	
25.1	. OVE	RVIEW	
25.2	RES	ULTS OF THE PEA	
2	5.2.1	Mining, Processing and Infrastructure	
2	5.2.2	Economic Analysis	
26.0	RECO	MMENDATIONS	
26.1	. BUE	OGET FOR FURTHER EXPLORATION	
26.2	REC	OMMENDATIONS	
2	6.2.1	Database and Exploration	
2	6.2.2	Metallurgy/Processing	
2	6.2.3	Mining	
	B 4		
. / A	DATE		271

27.1 MICON INTERNATIONAL LIMITED. 271 27.2 D.E.N.M. ENGINEERING LTD. 271 27.3 SRK CONSULTING (U.S.) INC. 271 28.0 REFERENCES. 272 28.1 PUBLICATIONS. 272 28.2 WEB BASED SOURCES 274 29.0 CERTIFICATES. 275

vii

List of Tables

Table 1.1	Cerro Caliche Project - Mineral Resource Estimate – 0.20 g/t AuEq Cut-off Grade1-7 (Effective Date: January 26, 2023)11
Table 1.2	Mine Production Schedule s by Pit
Table 1.3	Cerro Caliche Project Leach Feed Production Schedule14
Table 1.4 LC	DM Cashflow Summary16
Table 1.5	Annual Cashflow Summary18
Table 1.6	Budget for Further Metallurgical and Development Work
Table 2.1	Report of Authors and Co-Authors
Table 2.2	List of Abbreviations
Table 4.1	Cerro Caliche Concessions
Table 4.2	Cerro Caliche Concessions Payment Plan
Table 4.3	Cabeza Blanca Concession Payment Plan
Table 4.4	Tres Amigos Concession Payment Plan
Table 4.5	Rosario Concession Payment Plan
Table 5.1	Monthly Average Minimum and Maximum Temperatures and Rainfall
Table 9.1	Sonoro Surface Sample Summary60
Table 9.2	Surface Samples May 202161
Table 10.1	Drilling Summary
Table 10.2	Drillhole Location and Orientation74
Table 10.3	Significant Intercepts (0.15 Au cut-off)
Table 11.1	ALS Analytical Methods
Table 11.2	BV Analytical Methods
Table 11.3	Corex QA/QC Insertion Rate
Table 11.4	Control Samples Insertion Rates

Table 11.5	CRM Summary	125
Table 12.1	SRK Collar Validation – GPS Summary	134
Table 13.1	Results of Column Cyanidation Tests (put grid lines in this table, horizontal and vertical)	. 138
Table 13.2	Japoneses Veinlets - Particle Size Distribution and Gold Content	139
Table 13.3	Japoneses Veins - Particle Size Distribution and Gold Content	139
Table 13.4	Cuervos Veins - Particle Size Distribution and Gold Content	139
Table 13.5	Cueros Veinlets - Particle Size Distribution and Gold Content	140
Table 13.6	Japoneses Veinlets - Tail Sample Size Distribution and Gold Content	140
Table 13.7	Japoneses Veins - Tail Sample Size Distribution and Gold Content	. 141
Table 13.8	Cuervos Veins - Tail Sample Size Distribution and Gold Content	. 141
Table 13.9	Cuervos Veinlets - Tail Sample Size Distribution and Gold Content	. 141
Table 13.10	Variability Bottle Roll Test Results Summary	145
Table 13.11	Column Test Drill Core Composites Results	148
Table 13.12	Cyanide Solubility Variability Composites Results	149
Table 13.13	Cyanide Solubility Column Composites Results	151
Table 13.14	Comminution Testing: Crusher Work Index & Abrasion Index	151
Table 13.15	Buena Suerte Zone Composites Bottle Roll Tests Results	152
Table 13.16	Cuervos Zone Composites Bottle Roll Tests Results	152
Table 13.17	El Colorado Zone Composites Bottle Roll Tests Results	153
Table 13.18	Drill Core Composites Column Leach Tests Results	154
Table 13.19	Drill Core Composites Column Leach Tests Results	155
Table 13.20	Drill Core Composites Column Leach Tests Results	156
Table 13.21	Major Summary of Cerro Caliche Test Results	158
Table 14.1	Summary Statistics – Samples by Domain	. 162

Table 14.2	Capping Statistics by Domain1	.66
Table 14.3	Summary Statistics – 6 m Uncapped and Capped Composites by Domain 1	.66
Table 14.4	Summary Statistics – Density by Lithology1	.68
Table 14.5	Summary of Variogram Parameters1	.71
Table 14.6	Block Model Construction1	.72
Table 14.7	Summary of Estimation Parameters Used Per Domain and Interpolant1	.73
Table 14.8	Global Bias Summary1	.76
Table 14.9	Pit Optimization Input Parameters1	.86
Table 14.10	Cerro Caliche Project - Mineral Resource Estimate – 0.20 g/t AuEq Cut-off Grade1-7 (Effective Date: January 26, 2023)1	.86
Table 14.11	Grade-Tonnage for Indicated and Inferred Mineral Resources1	.88
Table 16.1	Estimated Mobile Mining Equipment Fleet Requirements1	.91
Table 16.2	Cerro Caliche Mine Production Schedule1	.92
Table 16.3 M	1exico Diesel Price	.93
Table 16.4 M	1exico Gasoline Price1	.93
Table 16.5	Mexican Electricity Price1	.93
Table 16.6	Parameters for Pit Optimization and CoG1	.94
Table 16.7	Optimization Results by Au Price and Pit1	.96
Table 16.8	Open Pit Design Parameters1	.98
Table 16.9	Resources Included Within the Pit Design2	200
Table 16.10	Mine Production Schedule s by Pit2	202
Table 16.11	Cerro Caliche Project Leach Feed Production Schedule2	203
Table 16.12	Conceptual Drilling and Blasting Parameters2	206
Table 16.13	Estimated Mobile Fleet Requirements2	207
Table 16.14	Personnel Requirements: Owners Team2	<u>208</u>

Table 16.15	Contractor Personnel Required per Unit Equipment	38
Table 16.16	Estimated Manpower Requirements for Contractor Team	09
Table 16.17	Waste Dump Location21	10
Table 16.18	Mining Operating Costs Breakdown2	11
Table 17.1	Process Design Criteria	16
Table 19.1	Annual High & Low LBMA PM Fix for Gold and Silver22	26
Table 20.1	Floristic Inventory of Project (subject to CUSTF AND MIA)23	39
Table 21.1	Capital Cost Summary	43
Table 21.2	Process Plant Indirect Capital Cost Factors24	44
Table 21.3	Process Plant Cost Estimate24	44
Table 21.4	Mine Plant Operating Costs	45
Table 21.5	Mine and Plant Operations Labour24	46
Table 21.6	Closure Costs	48
Table 22.1	LOM Cashflow Summary25	53
Table 22.2	Annual Cashflow Summary	55
Table 22.3	Gold and Silver Price Sensitivity25	57
Table 22.4	Operating and Capital Costs Sensitivity25	57
Table 25.1	Mine Production Schedule s by Pit	62
Table 25.2	Cerro Caliche Project Leach Feed Production Schedule	63
Table 25.3	LOM Cashflow Summary	65
Table 25.4	Annual Cashflow Summary	67
Table 26.1	Sonoro Budget for Targeted Infill Drilling	69
Table 26.2	Budget for Further Metallurgical & Development Work	70

List of Figures

Figure 1.1	Annual Cash Flow Summary	17
Figure 1.2	Sensitivity of After-Tax NPV₅	19
Figure 1.3	Sensitivity of After-Tax IRR	20
Figure 4.1	Location Map for the Cerro Caliche Project	28
Figure 4.2	Concession Map of the Cerro Caliche Project	29
Figure 5.1	Access Road Near the Project	37
Figure 5.2	Minimum and Maximum Average Temperature & Rainfall	39
Figure 6.1	Old Adit Entrance and Surface Mining Works, Cabeza Blanca Area	42
Figure 6.2	Historical Surface Samples at Cerro Caliche	43
Figure 6.3	Historical Drill Holes at Cerro Caliche	44
Figure 6.4	Historical Workings at Cerro Caliche	46
Figure 7.1	Regional Geology Map	48
Figure 7.2	Property Geology Map	49
Figure 7.3	Veins and Faults Plots	51
Figure 7.4	Named Vein Zones Area Location Map	52
Figure 7.5	Central Zone Vein and Detailed Geologic Map	53
Figure 7.6	Cabeza Blanca and El Colorado Vein and Detailed and Geologic Map	54
Figure 7.7	El Colorado Cross Section of Au Intercepts (A-A' line in Figure 7-7)	55
Figure 7.8	Española Vein and Structural Zone Sampled	56
Figure 8.1	Low Sulfidation Epithermal Model	58
Figure 9.1	Gold in Surface Samples on the Property	61
Figure 9.2	3D Model – Mineralized Zones – Surface Samples Above a 0.10 Au g/t Threshold	62
Figure 9.3	2022 Cabeza Blanca Vein Channel Sampling	63
Figure 10.1	Drill Hole Location Map	66

Figure 10.2	Mineralized Interval (SCD-033: 72.3 to 74.4 m)70
Figure 10.3	Mineralized Domains (Grade Shells) and Drilling – Plan View
Figure 10.4	Mineralized Domains (Grade Shells) Central Domain and Drilling – Section A-A72
Figure 10.5	Mineralized Domains (Grade Shells) Central and West Upper and Drilling – Section B-B. 72
Figure 10.6	Mineralized Domains (Grade Shells) West Upper and Drilling – Section C-C73
Figure 11.1	Control Chart – OxC58 and OxH52 –Chemex 122
Figure 11.2	Control Chart – OxC58 and OxH52 – Inspectorate
Figure 11.3	Control Chart - OxB130 – ALS
Figure 11.4	Control Chart - OxB130 – BV 126
Figure 11.5	Control Chart – OxF125 – ALS 127
Figure 11.6	Control Chart – OxF125 – BV 127
Figure 11.7	Coarse Blank Results – ALS 128
Figure 11.8	Coarse Blank Results – BV 129
Figure 11.9	RC Field Duplicate Results - ALS
Figure 11.10	RC Field Duplicate Results - BVFigure
Figure 12.1	Representative Collar Monument
Figure 12.2	Cucurpe Storage Warehouse
Figure 12.3	SCD-031 Core Interval (Granodiorite – 1.57 g/t and 0.75 g/t Au 135
Figure 13.1	Column Leach Study on Japoneses Veinlets Samples
Figure 13.2	Column Leach Study on Japoneses Vein Samples 142
Figure 13.3	Column Leach Study on Cuervos Vein Samples143
Figure 13.4	Column Leach Study on Cuervos Veinlets Samples143
Figure 13.5	Au Recovery - Bottle Roll Tests (Variability Composites, 80% - 1.7mm Feed Size)
Figure 13.6	Au Recovery, Bottle Roll Tests (Variability Composites, 80 % -1.7 mm Feed Size)146
Figure 13.7	Gold Leach Rate Profiles, Column Leach Tests, Drill Core Composites

Figure 13.8	Gold Leach Rate Profiles, Column Leach Tests, Drill Core Composites	157
Figure 13.9	Gold Leach Rate Profiles, Column Leach Tests, Drill Core Composites	158
Figure 14.1	Perspective View Showing Drill Holes and Mineralized Domains	160
Figure 14.2	Plan View Showing Drillholes and Post Mineralization Faults	161
Figure 14.3	Cross Section Showing Drill Holes and Post Mineralization Faults	162
Figure 14.4	Sample Lengths – Log Probability Plot	163
Figure 14.5	Au Capping Assessment – Log Probability Plot – Central and West Domains	164
Figure 14.6	Scatter Plots – Ag vs. Au – Central and West Domains	167
Figure 14.7	West Upper Domain Variogram – 6 m Capped Au	169
Figure 14.8	Central Domain Variogram – 6 m Capped Au	169
Figure 14.9	East Domain Variogram – 6 m Capped Au	170
Figure 14.10	OK Estimate vs. 6 m Capped Composite – Oblique Section	174
Figure 14.11	OK Estimate vs. 6 m Capped Composite – Oblique Section	175
Figure 14.12	OK Estimate vs. 6 m Capped Composite – Oblique Section	175
Figure 14.13	Swath Plot – Central Domain – Indicated – Au	177
Figure 14.14	Swath Plot – West Upper Domain – Indicated – Au	178
Figure 14.15	5 Swath Plot – Central Domain – Inferred – Au	179
Figure 14.16	5 Swath Plot – West Upper Domain – Inferred – Au	180
Figure 14.17	′ Swath Plot – East Domain – Inferred - Au	181
Figure 14.18	Change of Support Checks – Au	182
Figure 14.19	Drill Spacing Results – West Upper and Central Domains	184
Figure 14.20	Classification - West Upper and Central Domains	185
Figure 14.21	Grade-Tonnage Curves for Indicated and Inferred Mineral Resources	188
Figure 16.1	Grade and Tonnage for Pit Shells versus Gold Price	195
Figure 16.2	Optimized Pit Shells	197

Figure 16.3	Bench Design Parameters
Figure 16.4	Ultimate Pit Design
Figure 16.5	Source of ROM Leach Fed by Pit, Life-of-Mine
Figure 16.6	Drilling Parameter Dimensions
Figure 16.7	Waste Dump Design
Figure 16.8	Site Layout
Figure 17.1	Simplified Process Flowsheet (12,000 t/d – Years 3-9)
Figure 17.2	Simplified Process Flow Schematic
Figure 17.3	Crushing Simulation
Figure 18.1	Cerro Caliche Overall Site Plan
Figure 18.2	Leach Pad and Process Area
Figure 18.3	33kV Power Line Routing
Figure 20.1	UAB 9
Figure 20.2	Cerro Caliche Project Location Map
Figure 20.3	Vegetation Types of the Cerro Caliche Project
Figure 22.1	Ten Year Price History
Figure 22.2	Annual Tonnage Mined
Figure 22.3	Annual Tonnage and Grade Treated252
Figure 22.4	Annual Gold Production252
Figure 22.5	Operating Margin
Figure 22.6	Annual Cash Flow Summary254
Figure 22.7	Sensitivity of After-Tax NPV ₅ 256
Figure 22.8	Sensitivity of After-Tax IRR
Figure 25.1	Annual Cash Flow Summary
Figure 25.2	Sensitivity of After-Tax NPV5

Figure 25.3	Sensitivity of After-Tax IRR	
-------------	------------------------------	--

1.0 SUMMARY

1.1 INTRODUCTION

Sonoro Gold Corp. (Sonoro) has retained Micon International Limited (Micon) to assist with undertaking a Preliminary Economic Assessment (PEA) for its Cerro Caliche Project located in the Mexican State of Sonora Micon has also been retained to compile this Technical Report to disclose the results of the PEA, in accordance with the requirements Canadian National Instrument (NI) 43-101, Standards of Disclosure for Mineral Projects.

A PEA is preliminary in nature and includes inferred mineral resources that are considered too speculative geologically to have the economic considerations applied that would enable them to be classified as mineral reserves, and there is no certainty that the preliminary assessment will be realized.

In this report, the term Cerro Caliche Project refers to the areas within the exploitation or mining concessions upon which historical exploration and mining has been conducted, while the term Cerro Caliche property refers to the entire land package controlled by Sonoro.

The information in this report has been derived from published material, as well as data, professional opinions and unpublished material submitted by the professional staff of Sonoro or its consultants, supplemented by the Qualified Person(s) (QPs) independent observations and analysis. Much of the data came from prior reports for the Cerro Caliche Project, updated with information provided by Sonoro, as well as information researched by the QPs.

None of the QPs contributing to this report has or had previously had any material interest in Sonoro or related entities. The relationship with Sonoro is solely a professional association between the client and the independent consultants. This report has been prepared in return for fees based upon agreed commercial rates and the payment of these fees is in no way contingent on the results of the reports.

This report includes technical information which requires subsequent calculations or estimates to derive sub-totals, totals and weighted averages. Such calculations or estimations inherently involve a degree of rounding and consequently introduce a margin of error. Where these occur, the QPs do not consider them to be material.

This report is intended to be used by Sonoro in accordance with the terms and conditions of its agreement with Micon. That agreement permits Sonoro to file this report as a Technical Report with the Canadian Securities Administrators (CSA) pursuant to provincial securities legislation or with the Securities and Exchange Commission (SEC) in the United States.

The conclusions and recommendations in this report reflect the QPs' best independent judgment in light of the information available to them at the time of writing. The QPs and Micon reserve the right, but will not be obliged, to revise this report and its conclusions if additional information becomes known to them subsequent to the date of this report. Use of this report acknowledges acceptance of the foregoing conditions.

1.2 PROPERTY DESCRIPTION, LOCATION AND OWNERSHIP

The Cerro Caliche Project is located in the Cucurpe Municipality of Sonora State in northwestern Mexico, approximately 240 km northwest of the capital city of Hermosillo and approximately 160 km south of Tucson, Arizona, USA.

The centre of the mineralized zone has the following Universal Transverse Mercator (UTM) coordinates: 3,365,200 N, 536,600 E and the datum used was NAD 27, UTM Zone 12.

The Cerro Caliche Project is comprised of 15 contiguous mining concessions covering a total of 1,350.10 ha. Sonoro controls the 15 mining concessions through its wholly owned Mexican subsidiary, Minera Mar De Plata, S.A. de C.V. (MMP).

The area surrounding the concessions is used primarily for cattle ranching and is punctuated by numerous historical inactive mine workings, comprised mainly of small pits and tunnels with some underground development.

1.3 ACCESSIBILITY, CLIMATE, PHYSIOGRAPHY, LOCAL RESOURCES AND INFRASTRUCTURE

1.3.1 Accessibility

The Cerro Caliche Project is accessible by flying into Tucson, Arizona and crossing into Mexico at the Nogales border crossing, or by flying into Hermosillo, Sonora and driving north towards the property. The Project is accessed via the Mexican Federal Highway 15, a major transportation corridor between the US border to the north and major Mexican urban centres to the south. From the international border crossing at Nogales, Arizona, it is approximately 95 km to the town of Magdalena de Kino and from Hermosillo it is approximately 185 km to Magdalena de Kino.

From Magdalena de Kino, travel 40 km southeast via a two-lane highway to the town site of Cucurpe, then another 14 km northeast on an unsurfaced all-weather road to a locked gate, From the gate, continue 4.8 km along a dirt road to reach the centre of the Project. Driving time from Magdalena de Kino to the Project area is one hour and 30 minutes and driving time from Hermosillo is three hours and 30 minutes. The various mineralized areas and historical workings across the Project are accessible year-round by a network of trails and unpaved drill roads. The access roads within the Project will need to be upgraded to support any future mining operations. Road access through the adjacent Cerro Prieto mine property, currently granted to Sonoro personnel, will likely require a future detour, should the Project develop into an operation.

1.3.2 Climate

The Project is situated within the Sonoran Desert, an arid ecoregion that covers approximately 260,000 km² of the southwestern United States and northwestern Mexico, including most of the state of Sonora. The climate is considered semi-dry with an average annual temperature of 16.5 °C. During the summer months of June, July and August, the temperature averages 25.3 °C, with extreme values registered as high as 49 °C. During the winter months of December and January, the temperature averages 8.3 °C, with extreme values registered as low as -7 °C.

Annual precipitation is approximately 500 mm with the rainy season occurring between July and September, with maximum rainfall in July reaching 142.2 mm.

Weather conditions allow for exploration and mining operations year-round, with occasional work restrictions during the heavier rains of summer. However, given the current drought conditions throughout the Southern US and Northern Mexico due to climate change, hotter and dryer conditions as well as wetter periods, could potentially occur in the coming decades.

1.3.3 Physiography

Located within the Sonoran Basin and Range Province, the Project's surrounding physiography is characterized by narrow, north-northwest trending, fault-bounded mountain chains, separated by broad flat valleys of elongated, northwest-trending ranges separated by wide alluvial valleys.

Vertical relief is approximately 670 m, with a maximum elevation of 1,750 m at the Cerro Caliche peak located in the northeast region of the Property and a minimum elevation of 1,080 m in the arroyos draining system located in the southern region of the Project. A radial dendritic drainage pattern with moderate hill slopes can also be found within the Project's central region. Vegetation throughout the Project is dominated primarily by short grasses, mesquite and ocotillo shrubs, and nopal cactus.

1.3.4 Local Resources and Infrastructure

The state of Sonora has a well-established transportation infrastructure, skilled labour force and developed industries, including mining, agribusiness and renewable energy. The state is also a major manufacturing hub, due to its strategic location along the trade corridor between the US and Mexico, as well as the North American Free Trade Agreement (NAFTA) and subsequently revised United States-Mexico-Canada Trade Agreement (USMCA)

The nearby Municipality of Cucurpe, 14 km southwest of the Project, is an established mining district with a skilled workforce and two high-capacity electric transmission lines, one of which extends to the Cerro Prieto mine located adjacent to the Project's western boundary. A second transmission line extends to the Mercedes Mine, located 10 km to the southeast of the Project. The town of Magdalena de Kino, 54 km to the northeast, offers basic services and provisions, including telecommunication, accommodation, restaurants and gasoline. The capital city of Hermosillo, 240 km to the southeast is a major supplier of equipment and services to the region's mining sector with additional supplies shipped from Tucson, Arizona if needed.

Due to Mexico's well established mining sector, the Project can attract and retain skilled labour and mining professional for both exploration activities and potential future mining operations.

1.4 HISTORY

Until the start of the Mexican war of Independence in 1810, the Mexican State of Sonora was an historically important mining area and one of the largest contributors to the Spanish Crown. Mexico gained independence in 1821 and in 1824 Sonora became a state under the Mexican Constitution, but the war left the state economically and militarily weak. Many of the workings and mining communities were destroyed and those still operating were often raided and abandoned. The sector began to revive

towards the end of the 19th century, when large investments from US companies reopened many of the gold, silver and copper mines.

The Cerro Caliche Project has been the subject of exploratory work and artisan mining since the 1800's. Despite the scarcity of records, numerous small scale prospecting pits, as well as shallow shafts and adits, are evident throughout the property with several of the workings now overgrown with thick vegetation. Historical records describing early mining activities are not available.

Historical records and open-source data, including information from Anaconda Copper Co. (Anaconda), indicate that modern exploration activities at Cerro Caliche were carried out as early as the 1930s. In 1992, the federal Mexican government's publication "Geological-Mining Monograph of the State of Sonora" listed numerous veins identified in the Cucurpe District, including the following historical workings from the Cerro Caliche Project: Cabeza Blanca, Los Japoneses, El Colorado and Buena Suerte.

Exploration work performed by members of the Albelais family within the Cabeza Blanca and El Colorado zones consisted of gambusino mining from the early 1950's through 1990. Small scale underground mining in the areas of the two concessions yielded minor production which involved truck loads of selected quartz vein mineralized material being hauled to smelters at Cananea and sold as precious metal bearing quartz flux.

Adjacent to the Project, the Phelps Dodge Copper Co. (now Freeport-McMoran Copper (Freeport)) briefly held a large concession, La Vista, that overlapped a large part of the Project area in 1994, as part of the expanded exploration around the Santa Gertrudis mine. The Santa Gertrudis gold deposit was discovered by Phelps Dodge in 1986 and developed into a heap-leach gold mine that began production in 1991. Phelps Dodge sold part of the mine to Campbell Resources in 1994. Before the Santa Gertrudis mine ceased operations in 2000 due to low gold prices, it had produced 564,000 oz. gold. Agnico Eagle Mines Ltd. (Agnico Eagle) acquired the Santa Gertrudis mine in 2017 and continues to conduct exploration activities at the property. Due to the proximity of the Santa Gertrudis mine to the Project, common infrastructure such as access roads are shared.

1.5 GEOLOGICAL SETTING AND MINERALIZATION

1.5.1 Regional Geology

The Project lies west of the Sierra Madre Occidental (SMO) province within Basin and Range subprovince that continues north into Arizona. The surrounding region contains several large sediment filled basins and the mineralized areas near Cucurpe lie within the Basin and Range physiographic province, where the development of epithermal mineralization is coincident with the development of many of the graben basins of the province.

The graben fault related basins are part of a regional Tertiary age extensional normal faulting episode that produced north-south to northwesterly oriented ranges and valleys. The Project area contains Mesozoic metasedimentary rocks with adjacent areas of Tertiary volcanic deposits common in the region. Part of the Tertiary volcanic rocks are shown to be also part of the SMO volcanic rock units.

The SMO province lies approximately 100 km east of the Cucurpe district as a north-south trending mountain range made up of Oligocene-Miocene volcanics terminating near the U.S.–Mexico border. The SMO contains many epithermal-style gold and silver occurrences.

A metamorphic core complex is located immediately west of the Project area, across the adjacent gravel filled graben basin valley. The metamorphic rocks underlie the adjacent north-south trending mountain range west of the Project.

1.5.2 Property Geology

The geological setting for the Cerro Caliche Project is comprised of Mesozoic metasedimentary rock units that have been subject to weak folding with extensive fault activity. Metasedimentary rock units in the Cerro Caliche area mapped by the Servicio Geologico Mexicano (SGM) are identified as Jurassic age Cucurpe Group units. A large-scale mylonite zone, up to 20 m thick and representing a thrust fault that transects the Project, is crosscut by quartz veins, pervasive silicification and felsic intrusives. Metasedimentary, locally phyllitic, shales form the hangingwall, and dioritic to granodiorite with andesitic like fine grained units compose the footwall in the southwestern area of the Project.

Metasedimentary rocks are intruded by three igneous types, with the most mafic and being a coarsegrained biotite granodiorite ranging from irregularly foliated to weakly lineated. The diorite and granodiorite are observed with common widespread propylitic alteration that may be associated with nearby quartz veins. The granodiorite appears to grade into a quartz-rich medium-grained granite forming the prominent outcrop in and near the Project's El Colorado vein where it is commonly sericitic altered. Cross-cutting these rocks, and occasionally into the metasedimentary rocks, are irregular bodies of microdiorite, with common coarser variations to diorite and gabbro. These intrusive units are in the lower elevations of the Project's western region, more common below the thrust fault. Rhyolitic dikes and sills occur extensively on the Project, of which the youngest dikes follow the dominant northwest fault and vein orientation of the district. The rhyolite dikes cut all rock types in close association to quartz veins including cutting the related rhyolite sills.

Structural development in the Project is complex, with low angle faulting modifying the geology after intrusion of diorite-granodiorite intrusives into the Jurassic meta-sedimentary rocks. The outcrop of the contact in the southwest area of the Project has a 3 m to 5 m thick mylonite trace trending about azimuth 90° with 25° south dip, with locally intense silicification of porous mylonite near quartz veining. A similar low angle contact extends from the north end of the Guadalupe-Cabeza Blanca veins northward into the area below the La Gloria vein and shows more plastic deformation character where observed in drill core.

1.5.3 Mineralization

The gold and silver mineralization at Cerro Caliche occurs mainly in fractured Mesozoic quartzites and shale rock units, as well as within the rhyolitic intrusive dikes and sills. Mineralization throughout most of the Project is associated with silicification, ranging from moderate silica addition to intense pervasive silica flooding.

The mineralization throughout the Project area occurs as typical low sulphidation epithermal style. Veins observed are open space quartz filled veins with irregular banding and open vugs that are typical of low sulphidation epithermal gold-silver mineralization. The structures localizing the veins at the Project are developed within a broad listric faulting regime, producing a somewhat en-echelon vein structure repetition within a corridor that covers a 25 km² area around the Project. Individual structures observed on the Project have a maximum strike length of three kilometres with undetermined displacements. The vertical range of mineralization, based on topographic differences, is about 600 metres. Map plots of quartz veins illustrate the frequency of larger veins that imply a strong structural dependence with some rhyolite dikes following them, possibly defining rift extension zone. The dikes and veins continue outside the Project area in the Cerro Prieto mine area, and to the east towards the Mercedes Mine.

The two nearest operating mines in the district are also described as Epithermal Low Sulphidation gold silver deposits. Both mines have similar veining character and have northwesterly oriented quartz precious metal veins

The current interpretation of the structural and mineralization development of the Project hypothesizes that a deeper intrusive stock underlays the district and is the source of mineralizing fluids and rhyolitic dikes. The interpreted normal deep faulting has provided a conduit for silica-rich mineralizing fluids, resulting in the deposition of quartz veins with gold and silver at the Project area and localization of some rhyolite dikes.

The predominant northwest trending orientation of structures is an important feature of the Project area. More than 25 strong structures with at least 200 m of strike length are counted which have generally a parallel arrangement, crossing the entire Project concession area holdings. These structures developed ahead of vein deposition and rhyolite dike intrusion which follow and fill the structures. Many veins show brecciation, which indicates movement along the structures during vein formation.

In addition to the silicification, other alteration assemblages are noted on the Project. Argillic alteration is represented as weak to moderate clay development in feldspars and the matrix of rhyolitic rocks. Limonite, consisting of hematite with lesser goethite and jarosite, is present and developed from oxidized sulphides, mainly cubic pyrite. In deeper more mafic rock types propylitic alteration is widespread.

1.6 EXPLORATION PROGRAMS

1.6.1 Exploration

In addition to the data collected from its own Sonoro's exploration, Sonoro also acquired data from previous exploration programs completed by prior operators.

Sonoro geologists have extensively reviewed and analyzed the historical data acquired from previous operators since 1997. Total historical data collected on the Project includes 13,009 m of drilling in 119 drill holes and 4,338 surface samples. Discussions with past workers from the programs were also held to confirm that industry wide standards and protocols were followed.

The available data obtained by, previous owners prior to 2017 with a summary of the key fieldwork and sampling is as follows:

- 1997-1998: Cambior, 1,625 rock samples.
- ~2000: Sidney, 176 rock samples.
- 2007-2008: Corex, 1,872 rock samples.
- 2011-2012: Paget, 406 rock samples and 1,250 soil samples.

1.6.2 Drilling

1.6.2.1 Historical Drilling (Prior to 2018)

In summary, a total of 119 drill holes have been completed on the Project by the previous owners for 13,007.5 m. 101 holes (9,970 m) are RC and 18 holes (3,037.5 m) are core. Previous exploration has identified mineralization over several kilometres and with depths up to 200 m.

Discussions with prior operators confirmed that past programs were conducted to follow industry wide standards and protocols at that time, but no supporting documentation has been located to support this assumption. With the exception of Cambior drilling, previous reports describe at least partial drilling, sampling and analytical procedures and QA/QC results.

In 2018, Sonoro conducted a differential global positioning system (dGPS) survey to accurately locate historical drill collars completed by previous operators, Cambior, Corex Gold and Paget. Those collar locations were integrated into Sonoro's drilling database. The review of previous work completed on the Project allowed Sonoro to gain a deeper understanding of the vein zone geology and develop strategic drilling campaigns to define and expand the Project's mineralization.

1.6.2.2 Sonoro Drilling (2018 to Present)

Sonoro has performed a combination of reserve circulation (RC) and diamond drill core (core) drilling. As of the end of 2022, Sonoro has completed 331 RC and 48 core drill holes, totaling 42,350 m at the Project. Sonoro's program of exploration and infill drilling since 2018 has been successful in further extending and outlining the mineralization at Cerro Caliche, with a number of areas still open in all directions.

1.7 METALLURGICAL TESTWORK

Two metallurgical programs have been conducted to evaluate the metallurgical responsiveness of Cerro Caliche material to heap leaching. The first metallurgical investigation was conducted by Interminera during 2019 to 2020 on surface samples from the Cuevos and Japoneses East deposit areas.

The second more detailed test program was instigated at McCelland Laboratories, Inc. (McClelland) in 2020 to 2021 and included bottle roll and column leaching tests. The samples for this work were selected by Sonoro and included 52 drill core composites from the five major areas including Japoneses, Cuervos, El Colorado, Cabeza Banca, and Buena Suerte with both stockwork and vein breccia material types.

Gold mineralization is typical of low sulphidation epithermal precious metal hydrothermal systems. The gold mineralization is uniform and silicified, ranging from moderate silica addition to intense pervasive silica flooding. Mineralogical analyses on nine column leach test composites (McClelland, 2021) found that the material consisted primarily of quartz and feldspar. Mica content ranged from 3.2% to 7.7%. All other mineral phases, including sulphides, were present in minor to trace levels. Gold was observed to occur as electrum and native gold. Silver was found to occur primarily as acanthite (Ag₂S) and native silver.

1.7.1 Interminera Metallurgical Program

The metallurgical program at Interminera was conducted on four composites prepared from surface samples from Japoneses and Cuervos Deposit areas, representing vein and veinlet mineralization. The scope of work completed included site sampling, associated sample preparation and assays, particle size analysis, and cyanide column leaching testing.

Column testing started with 12 columns with approximately 800 kg of samples loaded in each column. Prior to loading, all material was two stage crushed to one inch (25.4 mm) and analyzed for particle size distribution and assays. As per standard practice, bottle rolls testing was completed to determine base operating parameters for the columns.

1.7.1.1 Conclusions and Recommendations from the Interminera Program

- Crushing size impacted gold liberation and extraction as expected. Crushing at particle size P_{80} $\frac{1}{2}$ " was recommend for higher gold recovery.
- Due to rock hardness, the following comminution testing was recommended:
 - Abrasion Index test for crusher liners. (Ai+0.22)/11=lb/KWh.
- Crushability index test to calculate net power requirements.
- Gold content by size fraction indicates that gold liberation is proportional to crushing rate.
- Solution percolation through the heap was good. Solution obstructions were not observed on any of the columns.
- Low irrigation flow rate (around 3.4 litres per hour per square metre) was recommended due to the low grade to fines generated. This will allow an optimal contact time with the mineralized material.
- Crushed rock presented good porosity despite its hardness.
- Medium and high consumption of reagents (NaCN 0.65 kg/t 0.90 kg/T) (NaOH 0.65 L/t 1.56 l/T) was due to the other minerals present such as Fe, Mn, Mg and Zn.
- Mineralized material responded well to cyanidation and had good conditions for a heap leaching process,
- Additional metallurgical testing of gold adsorption in activated carbon was recommended to cover the evaluation of gold extraction for the whole process.

- Recovery rate for vein samples (high gold grade) indicated 80% of the extraction is completed within the first 30 days with the remaining 20% extracted in following 30 days.
- Recovery rate for veinlets samples (low gold grade) indicated constant extraction that continued after 60 days. It was recommended to extend testing for 90 days to determine the total extraction.

1.7.2 McClelland Metallurgical Program

The metallurgical program conducted by McClelland was more extensive than the program conducted by Interminera and was conducted on 52 drill core composites made from 428 lineal metres of PQ drill core (10 drill holes). The drill core represented vein breccia and stockwork mineralization from five major zones, including:

- Japoneses
- Cuervos
- El Colorado
- Cabeza Banca
- Buena Suerte

The metallurgical program included both bottle roll leach tests and column leach tests. Core was hand sampled, crushed, split, and assayed in two-metre lengths to determine gold and silver content. Any intervals over > 0.15 g/t Au were analyzed using the cyanide shake procedure to determine cyanide soluble gold and silver content.

Bottle roll testing was performed on forty-three variability composites that were prepared from drill core intervals and crushed to an 80% -1.7 mm. feed size. The purpose of the bottle roll tests was to obtain preliminary information concerning heap leach amenability and to evaluate mineralization variability.

1.7.2.1 Bottle Roll Testing and Variability Testing Summary and Conclusions:

- Variable head grades: 0.03 to 2.29 g/t Au, 5.0 g/t Ag.
- Five composites greater than 10 g/t Au.
- Gold cyanide solubility over 40% with average of 64.4%.
- Mineralogical analysis showed predominantly quartz with lesser amount of feldspar.
- Bottle roll testing indicated that all composites were amenable to cyanide leaching with gold recovery over 65%, except in one composite.
- Variability composites contained little to no sulphide sulphur or organic carbon. No signs of refractory behaviour or preg-robbing.
- Average gold recovery of 80.4% but improved to 81.3% with elimination of the low-grade composites (0.15 g/t Au).
- Gold recoveries for four major mineralized zones averaged 74% or greater.

- Silver recoveries were low and average 27.2%.
- Reagent additions were generally low.
 - NaCN addition averaged 0.16 kg/t (with one exception).
 - lime addition between 1.8 kg/t 2.1 kg/t.

Based on results from the bottle roll tests, nine larger composites were prepared for column leach testing at crush sizes of 100% -50 mm and 80% -12.5 mm to determine heap leach amenability and feed crush size sensitivity.

1.7.2.2 Column Leach Testing Summary and Conclusions:

- All nine composites were amenable to simulated heap leach cyanide treatment and contained little to no sulphide sulphur or organic carbon. No signs of refractory behaviour or preg-robbing.
- Gold recoveries obtained at the -50 mm (coarse) feed size ranged from 53.6% 81.5%, with an average of 65.8% after 100 days of leaching and rinsing.
- Gold recoveries obtained at the 80% -12.5 mm (fine) feed size ranged from 61.3% 80.6% with an average of 73.7% after 90 days of leaching and rinsing.
- The finer crush size improved average gold recovery by 8%
- Gold recovery rates (profiles) were moderate and very slow when leaching terminated; longer leaching cycles should improve gold recovery albeit incrementally.
- Cyanide consumption was < 0.5 kg/t for the -50 mm feed while consumption for 12.5 mm feed ranged from 0.36 kg/t 0.80 kg/t and average 0.55 kg/t.
- Silver recovery was low and averaged 27 %.
- Hydraulic conductivity tests were conducted on the 12.5 mm feed size leached residue to determine mineralization permeability under simulated heap stacks of up to 100 m. Samples tested show adequate permeability for heap leaching to 100-metre height, without agglomeration pre-treatment. One exception was the Buena Suerte composite which had elevated clay content and would be limited to 40 m stack height without blending.

1.8 MINERAL RESOURCE ESTIMATE

The mineral resource estimate used as the basis for the PEA was developed by SRK Consulting (U.S.) Inc. (SRK) in accordance with the requirements of National Instrument 43-101 and is based on a total 55,360 metres of drilled data including 498 drill holes, 17 trenches and assays for 53,865 metres of the drilled data. The mineral resources were first disclosed in a Technical Report titled "NI 43-101 Technical Report: Mineral Resource Estimate, Cerro Caliche Project, Sonora, Mexico," with an effective date of January 26, 2023 and filed on March 27, 2023 by Sonoro.

The SRK mineral resource estimate is summarized in Table 1.1.

Table 1.1

Cerro Caliche Project - Mineral Resource Estimate – 0.20 g/t AuEq Cut-off Grade1-7 (Effective Date: January 26, 2023)

	Tonnes		Average Gra	ade	Metal Contents				
Classification	(kt)	Au (g/t)	Ag (g/t)	AuEq (g/t)	Au (koz)	Ag (koz)	AuEq (koz)		
Indicated	19,900	0.44	3.5	0.46	280	2,235	290		
Inferred	10,550	0.42	4.0	0.44	140	1,345	150		

kt = thousand tonnes

koz = thousand troy ounces

- The Mineral Resources in this estimate were classified according to definitions outlined in CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines (CIM, 2014) prepared by the CIM Standing Committee on Reserve Definitions and adopted by CIM Council.
- 2. Pit shell constrained resources with reasonable prospects for eventual economic extraction are stated as contained within estimation domains above 0.20 g/t AuEq cut-off grade. Pit shells are based on an assumed long-term gold price of US\$1800/oz and gold recovery of 74%. Silver was not included in the optimization parameters. An overall pit slope angle of 50° was applied based on preliminary geotechnical data. Operating cost assumptions include mining cost of US\$1.90/tonne (t), processing cost of US\$6.47, and G&A cost of US\$0.49/t, and selling costs of US\$0.20/oz.
- 3. AuEq is calculated based on the long-term gold price of US\$1,800/oz, silver price of US\$25/oz, no mining dilution applied, gold recovery is 74% and silver recovery is 27.2%. AuEq = [(Au grade* Au recovery* Au price) + (Ag grade*Ag recovery*Ag price)] / (Au recovery*Au price).
- 4. Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources will be converted into Mineral Reserves in the future. The estimate of Mineral Resources may be materially affected by environmental permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.
- 5. All quantities are rounded to the appropriate number of significant figures; consequently, sums may not add up due to rounding.
- 6. The mineral resources were estimated by Mr. Doug Reid, P.Eng.(EGBC 123571), Principal Consultant (Resource Geology) of SRK Consulting (U.S.), Inc., a Qualified Person as defined under the terms of CIM guidelines.

1.9 MINING, PROCESSING AND INFRASTRUCTURE

1.9.1 Mining

The long-term open pit mining evaluation for the "Cerro Caliche Project" provides for a nominal rate of run-of-mine (ROM) leach feed production of 4,000 t/d during the first 3 years and 12,000 t/d in the following years. The ROM total leach feed production is 28.6 Mt, based on an in-situ marginal cut-off grade (CoG) of 0.21 g/t gold, f over a period of 9.1 years, with a contained average of 45,000 ounces of gold per year and total of 414, 429 ounces. The waste material within the ultimate pit design is 60.0 Mt and the total material mined is 88.6 Mt, for an overall strip ratio (SR) of 2.1. The ultimate pit design contains waste material comprising all mined material below the CoG of 0.21 g/t gold, including low grade (LG) mineralized material between the "break even" and "marginal" Au CoG's of 0.19 g/t gold and 0.21 g/t gold, which may be segregated into a LG stockpile for future potential blending (LG material is not included in the in-pit resources).

This study assumes open pit mining methods, utilizing front-end loaders and/or hydraulic excavator to load haul trucks for waste and mineralized material haulage. Mining activities include site clearing, removal of topsoil, free-digging, drilling, blasting, loading, hauling and mining support activities.

Material within the pits is designed to be blasted at 6 m bench height intervals. The stripped waste material is to be hauled to the waste dump. The low-grade mineralized material can be segregated into designated stockpile areas, for subsequent processing. There are no stockpile locations, footprints, or designs contained in this PEA report. The low-grade material is treated as waste, highlighted as positive potential for future stages of planning.

For the PEA study, the mine has been assumed to be contractor operated, with the contractor providing the mining equipment and labour. The fleet details should be further refined in the next stage of PFS level engineering, with quotations obtained from three contractors. There is opportunity to consider a trade off study of operator owned vs. contractor owned fleet within a PFS.

The mine plan has been scheduled based on operating 2–10-hour shifts per day, 7 days per week, for 336 days per year. There are 336 operational days, allowing for 29 days or 8%, for planned external downtime delays, weather condition delays, and mining operational issues.

The ultimate pit design has 12 pit areas with the overall pit slope angles are below the 50-degree maximum of the inter-ramp angle defined by the face angle and the berm widths. Cerro Caliche West is comprised of the Cabeza Blanca and El Colorado Pits, while the remainder of the pits are all considered part of Cerro Caliche Central.

Mine production scheduling was carried out using Datamine's NPVS software. The total quantities of leach feed, waste and the grades coming from each pit in the life-of-mine production schedule are summarized in **Error! Reference source not found.**, and the annual schedule of ROM leach feed production is summarized in Table 1.3.

The mining rate follows the 4,000 and 12,000 t/d throughput capacities of the crushing circuit in Years 1-3 and Years 4-10 respectively. The daily rates add up to annual totals of 1.34 Mt and 4.03 Mt of ROM leach feed, respectively.

The LOM production schedule includes ROM leach feed of 28.6 Mt and e 60.0 Mt of waste, for a total of 88.6 Mt mined. The production schedule was estimated on a monthly basis for the first 2 years, then continued on a yearly basis until the end of the mine life in early year 10.

Total 2,521,157

0.65

2.48 0.663

53,743

1,339,326

0.322

3.772 0.341

14,691

364,304

0.363 2.322

0.375 4,391

1,750,166 0.342

> 7.728 0.382

21,482 609,838

> 0.463 2.145

> 0.474

9,295 2,059,866

0.324

5.356

0.352 23,283

Table 1.2 Mine Production Schedule s by Pit

Pit	Parameter	Units	Total		Pit	Parameter	ι
	ROM	t	10,744,042			ROM	
	Pit Parameter Units Total ROM t 10,744,042 Au Grade g/t 0.373 - Buena Visia Ag Grade g/t 0.368 Au Grade g/t 0.373 - Buena Visia Ag Grade g/t 0.388 Au Grade g/t 0.388 - Buena Visia Au Grade g/t 0.542 Au Grade Au Grade - Au Grade g/t 0.554 Au Contained Au Grade Au Grade - Au Grade g/t 0.559 Au Grade g/t 0.526 - Au Grade g/t 0.526 Au Grade Au Grade - Au Grade g/t 0.526 Au Contained Au Grade - Au Grade g/t 0.526 Au Contained Au Grade - Au Grade g/t 0.526 Au Grade Au Grade - Au Grade g/t 0.526 Au Grade Au Grade - Au Grade g/t 0.526 Au Grade Au Grade -	Au Grade	T				
Japoneses- Buena Vista	Ag Grade	g/t	3.052		Cabeza Blanca	t Parameter ROM Au Grade Ag Grade Au Eq Grade Au Contained Ounces ROM Au Grade Ag Grade Au Grade Ag Grade Au Grade Au Contained Ounces ROM Au Grade Au Grade Au Contained Ounces Ag Grade Au Contained Ounces Ag Grade Au Contained Ounces Au Contained Ounces ROM Au Grade Au Grade Au Grade Au Grade Au Contained Ounces ROM Au Grade Au Contained Ounces ROM Au Grade Au Contained Ounces	T
	AuEq Grade	g/t	0.388				
	Au Contained Ounces	oz	134,160			Au Contained Ounces	
	ROM	t	1,849,096			ROM	
	Au Grade	g/t	0.542			Au Grade	
El Colorado	Ag Grade	g/t	2.231		Chinos NW	Ag Grade	
	AuEq Grade	g/t	0.554			AuEq Grade	
	Au Contained Ounces	oz	32,914			Au Contained Ounces	
	ROM	t	1,342,363			ROM	T
	Au Grade	g/t	0.509			Au Grade	T
Cuervos	Ag Grade	g/t	3.404		Chinos Altos	Ag Grade	F
	AuEq Grade	g/t	0.526	Total Pit Parameter Units 0,744,042 ROM t Au Grade g/t 0.373 3.052 Cabeza Blanca ROM t 0.388 Au Grade g/t Au Grade g/t 134,160 Au Contained Ounces oz Au Grade g/t 0.542 2.231 Au Grade g/t Au Grade g/t 0.542 2.231 Au Grade g/t Au Grade g/t 0.542 2.231 Au Grade g/t Au Grade g/t 3.42,363 Chinos NW Ag Grade g/t Au Grade g/t 3.444 0.556 Au Grade g/t Au Grade g/t 3.444 0.566 Au Grade g/t Au Grade g/t 3.445 0.56 Au Grade g/t Au Grade g/t 3.431 Au Grade g/t Au Grade g/t Au Grade g/t 3.5131 Au Grade g/t </td			
	Au Contained Ounces	oz	22,719			ParameterROMAu GradeAg GradeAuEq GradeAu Contained OuncesROMAu GradeAg GradeAuEq GradeAu Contained OuncesROMAu GradeAu Contained OuncesROMAu GradeAu GradeAu GradeAu GradeAu GradeAu GradeAu Contained OuncesROMAu Contained Ounces	t
	ROM	t	4,148,750			Au Grade Ag Grade AuEq Grade Au Contained Ounces ROM Au Grade Ag Grade AuEq Grade Au Contained Ounces ROM Au Grade Au Grade Au Contained Ounces ROM Au Contained Ounces ROM Au Contained Ounces ROM Au Grade Ag Grade AuEq Grade AuEq Grade	
	Au Grade	g/t	0.492			Au Grade	t
Buena Suerte	Ag Grade	g/t	4.269		El Rincon	Ag Grade	t
	AuEq Grade	g/t	0.514			AuEq Grade	T
	Au Contained Ounces	g/t 0.514 AuEq Grade es oz 68,571 Au Contained Ounces t 531,331 ROM g/t 0.483 Au Grade					
	ROM	t	531,331			ROM	T
/eta de Oro	Au Grade	g/t	0.483			Au Grade	
	Ag Grade	g/t	8.774		La Espanola	Ag Grade	T
	AuEq Grade	g/t	0.528			AuEq Grade	
	Au Contained Ounces	oz	9,011			Au Contained Ounces	T
	ROM	t	1,355,496			ROM	
	Au Grade	g/t	0.439			Au Grade	T
Abejas	Ag Grade	g/t	4.725		El Bellotoso	Ag Grade	t
ROMt4,148,750Au Grade g/t 0.492Au Grade g/t 4.269AuEq Grade g/t 0.514Au Contained Ounces oz 68,571Au Grade g/t 0.483Au Grade g/t 0.483Au Grade g/t 0.483Au Grade g/t 0.528Au Contained Ounces oz 9,011Au Grade g/t 0.528Au Contained Ounces oz 9,011Au Grade g/t 0.439Au Grade g/t 0.439Au Grade g/t 0.463Au Contained Ounces oz pejasAg Grade g/t PitParameterUnitsROMt28,615,735Au Grade g/t Au Grade g/t $au Contained Ounces$ oz bit	AuEq Grade						
	Au Contained Ounces	oz	20,169			Au Contained Ounces	
Pit	Parameter	Units	Total				
	Au Crada	د ۳/۲	20,010,735				
	Au Grade	g/t	0.431				
	Ag Grade	g/t	3.784				
Total Mined	Aueq Grade	g/t	0.45				
	Au Contained Ounces	oz	414,429				
	Waste	t	60,019,311				
	l otal	t	88,635,046				
	SR	t:t	2.1				
PRODUCTION ASSUMPT	TIONS		TOTAL				
Days			3,057				
Total ROM tonnes/day			9,362				

Total ROM tonnes over LOM

Total Insitu ROM Ounces over LOM

28,615,735

414,429

Table 1.3
Cerro Caliche Project Leach Feed Production Schedule

MINE S	CHEDULE	Units	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10	Total
	ROM	Mt	0.84	0.28					0.38	1.02			2.5
Cabora Planca	Au Grade	g/t	0.71	1.35					0.63	0.42			0.65
Guadalune	Ag Grade	g/t	2.40	1.12					2.95	2.74			2.48
Guudulupe	AuEq Grade	g/t	0.73	1.36					0.64	0.43			0.66
	Au Contained	koz	19.67	12.04					7.78	14.25			53.74
El Colorado	RUM Au Grade	ivit a/t	0.46	0.26					0.21	0.92			1.8
	Ag Grade	g/t	3.28	2.15					2.66	1.627			2.23
	AuEq Grade	g/t	0.68	0.59					0.40	0.517			0.55
	Au Contained	koz	10.02	4.87					2.74	15.28			32.91
	ROM	Mt	0.04	0.54	1.03	2.54							4.1
Buena Suerte	Au Grade	g/t	0.33	0.38	0.53	0.50							0.49
	Ag Grade	g/l g/t	3.05	4.67	3.17	4.64							4.27
	Au Contained	koz	0.44	7.00	18.16	42.98							68.57
	ROM	Mt		0.27	0.32	0.77							1.4
	Au Grade	g/t		0.49	0.43	0.42							0.44
Abejas	Ag Grade	g/t		6.48	4.87	4.06							4.73
	AuEq Grade	g/t		0.52	0.46	0.44							0.46
	Au Contained	KOZ Mt		4.48	4.65	0.72	2 72	3.47	3 11	0.72			20.17
	Au Grade	g/t				0.41	0.39	0.36	0.37	0.37			0.37
Japoneses-Buena	Ag Grade	g/t				4.05	3.13	3.49	2.76	0.95			3.05
Vista	AuEq Grade	g/t				0.43	0.40	0.37	0.39	0.38			0.39
	Au Contained	koz				9.92	35.16	41.76	38.54	8.79			134.16
	ROM	Mt					0.78	0.57					1.3
Cuerves	Au Grade	g/t					0.54	0.46					0.51
Cuervos	Ag Grade	g/t g/t					0.57	0.47					0.53
	Au Contained	koz					14.14	8.58					22.72
	ROM	Mt					0.53						0.5
	Au Grade	g/t					0.48						0.48
Veta de Oro	Ag Grade	g/t					8.77						8.77
	AuEq Grade	g/t					0.53						0.53
	ROM	Mt					9.01		0.33	1.01			1.3
	Au Grade	g/t							0.36	0.31			0.32
Chinos NW	Ag Grade	g/t							5.84	3.09			3.77
	AuEq Grade	g/t							0.39	0.32			0.34
	Au Contained	koz							4.21	10.48	0.00		14.69
	RUM Au Grade	a/t								0.36	0.00		0.4
Chinos Altos	Ag Grade	g/t								2.33	1.16		2.32
	AuEq Grade	g/t								0.37	0.43		0.37
	Au Contained	koz								4.34	0.05		4.39
	ROM	Mt									2.06		2.1
El Bellotoro	Au Grade	g/t									0.32		0.32
LI Dellotoso	Ag Glade	g/t									0.35		0.35
	Au Contained	koz									23.28		23.28
	ROM	Mt									1.75		1.8
	Au Grade	g/t									0.34		0.34
El Rincon	Ag Grade	g/t									7.73		7.73
	Au Contained	g/l koz									21 48		21.48
	ROM	Mt									0.22	0.39	0.6
	Au Grade	g/t									0.47	0.46	0.46
La Espanola	Ag Grade	g/t									3.37	1.46	2.15
	AuEq Grade	g/t									0.49	0.47	0.47
	Au Contained	KOZ	12	1 2	12	4.0	4.0	4.0	4.0	4.0	3.42	5.88	9.29
	Au Grade	g/t	0.68	0.64	0.51	0.47	0.43	0.37	0.40	0.40	0.34	0.46	0.43
ROM	Ag Grade	g/t	2.74	3.82	3.57	4.42	4.08	3.32	3.03	2.22	6.27	1.46	3.78
	AuEq Grade	g/t	0.70	0.66	0.53	0.49	0.45	0.39	0.41	0.41	0.37	0.47	0.45
	Au Contained	koz	30	28.4	22.8	63.9	58.3	50.3	53.3	53.1	48.2	5.9	414.4
	LG Stockpile	Mt	0	0.5	0.5	1.4	1.4	1.4	1.6	1.4	1.6	0.0	10.29
Waste	waste Rock	I∕/It	4	3.3	2.3	/.1 9 E	5.6	4.9	7.6 0.2	7.6	6.9 9 E	0.8	49.73
	ROM	Mt	4	5.8 1.3	2.8	6.5 4.0	4.0	4.0	9.3 4.0	9.0 4.0	0.5 4.0	0.9	28.62
	Au Grade	g/t	0.68	0.64	0.51	0.47	0.43	0.37	0.40	0.40	0.34	0.46	0.43
	Ag Grade	g/t	2.74	3.82	3.57	4.42	4.08	3.32	3.03	2.22	6.27	1.46	3.78
Mined	AuEq Grade	g/t	0.70	0.66	0.53	0.49	0.45	0.39	0.41	0.41	0.37	0.47	0.45
	Au Contained Oz	koz	30	28.4	22.8	63.9	58.3	50.3	53.3	53.1	48.2	5.9	414.4
	Waste	Mt	4	3.8	2.8	8.5	7.0	6.3	9.3	9.0	8.5	0.9	60.0
	SR	t:t	3.0	2.9	2.1	2.1	1.7	1.6	2.3	2.2	2.1	2.2	2.10

1.9.2 Processing

The recovery methods implemented in the design of the crushing and processing facilities for the Cerro Caliche Project used preliminary testwork as a basis for flowsheet development and design criteria. The plant design for this PEA is based on a nominal 4,000 t/d (Years 1 and 2) and a nominal 12,000 t/d (Years 3-9) of mineralized material with average grades of 0.43 g/t Au and 3.75 g/t Ag.

The process plant flowsheet comprises three stage conventional crushing, material handling of crushed product and loading onto the lined heap pads. Solution ponds and pumping system allow irrigation of loaded mineralized material and subsequent collection of the pregnant solution. The pregnant solution is pumped to two trains of carbon-in-column tanks for loading gold and silver onto the carbon. Standard carbon in column processing includes carbon advancement, carbon addition and loaded carbon recovery. The Cerro Caliche processing plant will also operate carbon stripping, carbon reactivation, electrowinning and doré production.

The Cerro Caliche processing plant is designed to operate for two 12-hour shifts per day, 360 days per year. Utilization expected for the specific circuits is 60% for the primary crusher and 92% for the leaching and carbon adsorption. The factors applied allow for sufficient downtime for maintenance, both scheduled and unscheduled, within the crushing and processing areas.

1.9.3 Infrastructure

The current infrastructure of the Cerro Caliche Project consists of a nearby medium voltage powerline, access roads, and mining operations within close proximity. There is a 14 km gravel access road from the village of Cucurpe, located 40 km southeast of the regional hub of Magdalena de Kino, which, in turn, is located 54 km from the Project. For years one and two, the site will be powered by two 750 kw generators and then by a 33 kV transmission line for years three through nine. Usage and installation costs have been discussed with the Commission Federal de Electricity (CFE) for the power line and associated switch gear. The estimated capital and operating costs for power are included within the report.

As multiple active mines and sufficient infrastructure surround the Cerro Caliche property, D.E.N.M. Engineering is of the opinion that there are no major obstacles to building this open pit mine, heap leach facility, and process recovery plant in the proposed area.

Water is to be supplied by nearby drilled water wells and there is no on-site housing, as all employees and contractors will commute from the nearby town locations.

1.10 ECONOMIC ANALYSIS

Micon's QP has prepared the economic assessment of the Project on the basis of a discounted cash flow model, from which Net Present Value (NPV), Internal Rate of Return (IRR) and payback can be determined. Assessments of NPV are generally accepted within the mining industry as representing the economic value of a project after allowing for the cost of capital invested.

The objective of the study was to determine, at the PEA level of analysis, the potential viability of the Project. In order to do this, the cash flow arising from the base case has been forecast, enabling a

computation of NPV to be made. The sensitivity of NPV to changes in the base case assumptions for price, operating costs and capital expenditure was then examined.

1.10.1 Macro-Economic Assumptions

The following assumptions were used to determine the results of the PEA;

- All results are expressed in United States dollars (US\$) except where stated otherwise. Cost estimates and other inputs to the cash flow model for the Project have been prepared using constant, third quarter 2023 money terms, without provision for escalation or inflation.
- The cash flow projections used for the evaluation have been prepared on an all-equity basis. This being the case, the weighted average cost of capital (WACC) is equal to the market cost of equity. In this case, Micon's QP has selected an annual discount rate of 5% for its base case and has tested the sensitivity of the Project to changes in this rate.
- Mexican federal income tax is provided for at the rate of 30%. In addition, a mining royalty of 0.5% of gross sales revenue and mining tax of 7.5% of net income have been provided for in the economic evaluation.

The Project has been evaluated using constant metal prices of US \$1,800/oz Au and US \$23/oz Ag. These forecast gold and silver prices are below the trailing average prices of US \$1,841/oz and US \$23.70/oz, respectively, for the three-year period ended 31 July 2023.

1.10.2 Results of the Economic Analysis

- The annual recovered gold, together with gold equivalent production, demonstrates that silver contributes only a small proportion (4%) of the total gold equivalent ounces produced.
- The total revenues from sales of gold and silver exceed site operating costs in each period, resulting in an average operating margin of 28% over the life of the mine (LOM). The cash operating cost averages US \$1,349/oz Au, or US \$1,295/oz AuEq.
- Off-site refining costs, royalties, sustaining capital and closure costs together add another US \$100/oz bringing the all-in sustaining costs to \$1,395/oz AuEq.

Table 1.4 summarizes the LOM cash flows and unit costs for the Project. Figure 1.1 presents a summary of the annual cash flows.

	LOM (US\$M)	US\$/t treated	US\$/oz AuEq
Sales Revenue	535.6	18.72	1,800
Mining Ore	57.1	1.99	192
Mining Waste	119.4	4.17	401
Crushing	25.0	0.87	84
Processing	163.8	5.72	550

Table 1.4 LOM Cashflow Summary

	LOM (US\$M)	US\$/t treated	US\$/oz AuEq
G&A	20.1	0.70	68
Cash Operating Costs	385.4	13.47	1,295
Refining	7.3	0.26	25
Royalties	4.0	0.14	13
Sustaining	15.5	0.54	52
Reclamation	2.9	0.10	10
All-in Sustaining Cost	415.1	14.51	1,395
Initial Capital	15.5	0.54	52
All-in-Cost	430.7	15.05	1,447
Mining taxes	11.8	0.41	40
Income Taxes	23.0	0.81	77
Net Cashflow	70.1	2.45	236

Figure 1.1 Annual Cash Flow Summary

Table 1.5 provides a summary of the annual cash flows over the LOM period.

The average all-in sustaining costs (AISC) over the LOM is estimated at \$1,454/oz gold or \$1,395/oz gold equivalent.

The base case cash flow equates to a pre-tax IRR of 59%/y and, at a 5% annual discount rate, gives a pre-tax net present value (NPV₅) of US \$71.4 million.

After-tax cash flows equate to an IRR of 45%/y and NPV₅ of US \$47.7 million. Undiscounted payback is achieved in approximately 2.8 years.

Sonoro Gold Corp.

Table 1.5 Annual Cashflow Summary

	Pre-Prod	Year1	Year2	Year3	Year4	Year5	Year6	Year7	Year8	Year9	Total
Production											
Mined - Ore (tonnes)		1.344.000	1,344,000	4.032.000	4.032.000	4.032.000	4.032.000	4.032.000	4.032.000	1.735.735	28.615.735
Mined - Waste (tonnes)		3,998,998	3.843.543	9.768.338	5.926.684	7.197.732	7.682.958	8.057.891	9.621.129	3,922,038	60.019.311
Strip Ratio		2.66	2.46	2.05	1.13	1.44	1.51	1.68	2.00	1.88	1.74
Average Grade											
Ore- crushed Au g/t		0.68	0.64	0.48	0.41	0.38	0.40	0.40	0.36	0.40	0.43
Ore - crushed Ag g/t		2.74	3.82	4.54	3.12	4.22	3.03	2.73	4.23	5.91	3.75
Ore - crushed AuEq g/t		0.70	0.66	0.50	0.43	0.40	0.42	0.42	0.39	0.43	0.45
Process Recovery - Au	72%	72%	72%	72%	72%	72%	72%	72%	72%	72%	
Process Recovery - Ag	27%	27%	27%	27%	27%	27%	27%	27%	27%	27%	
Gold Price US\$/oz Au	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	
Silver Price US\$/oz Ag	\$23	\$23	\$23	\$23	\$23	\$23	\$23	\$23	\$23	\$23	
Recovered Gold & Silver Producti	on										
Au Oz Recovered (000s)		17,007	20,123	39,846	39,884	36,134	37,272	37,618	34,748	22,958	285,591
Ag Oz Recovered (000s)		17,685	34,322	106,244	115,233	138,827	119,945	107,339	127,010	171,287	937,893
AuEq (000 oz)		17,233	20,562	41,204	41,357	37,908	38,805	38,990	36,371	25,147	297,575
Revenues (US\$'000)											
Revenue -Au		30,613	36,221	71,723	71,792	65,042	67,090	67,713	62,547	41,324	514,064
Revenue -Ag		407	789	2,444	2,650	3,193	2,759	2,469	2,921	3,940	21,572
Sales Revenue		31,019	37,011	74,166	74,442	68,235	69,849	70,182	65,468	45,264	535,636
Cash Costs (US\$'000)											
Mining Ore		2,696	2,726	7,816	8,365	8,092	8,040	8,045	7,861	3,425	57,067
Mining Waste		8,023	7,797	18,935	12,296	14,445	15,321	16,079	18,757	7,739	119,392
Crushing		1,451	1,451	3,394	3,394	3,394	3,394	3,394	3,394	1,720	24,988
Processing		8,373	8,383	22,857	22,857	22,857	22,857	22,857	22,816	9,937	163,792
G&A		2,032	2,032	2,470	2,470	2,470	2,470	2,470	2,470	1,235	20,120
Total Cash Costs		22,576	22,389	55,472	49,382	51,258	52,082	52,845	55,298	24,056	385,359
Refining (USD \$m)		208	327	877	931	1,050	943	870	971	1,165	7,341
2% Royalties Payout (USD \$m)		1,000	1,000	0	2,000	0	0	0	0	0	4,000
Sustaining Capital (USD \$m)		1,237	6,753	2,981	2,981	804	250	250	250	0	15,506
Reclamation (USD \$m)		137	137	411	411	411	411	411	411	177	2,915
Total AISC (USD \$m)		47,735	54,079	116,746	107,096	106,143	107,207	108,634	113,072	51,011	415,121
Initial Capital Costs	-15,532										-15,532
Change in W/Cap.		-694	-508	-335	-523	664	-65	35	589	836	0
Income Tax Payable		-457	-1,806	-3,028	-4,182	-2,687	-2,933	-2,834	-824	-4,287	-23,039
Mex. mining tax, royalty		-600	-1,084	-1,534	-2,009	-1,363	-1,438	-1,413	-844	-1,557	-11,843
Net Cash Flow (US\$'000)	-15,532	4,247	3,144	9,940	12,434	11,737	12,137	12,005	6,703	13,285	70,101
Cum. cashflow	-15,532	-11,285	-8,141	1,799	14,233	25,971	38,107	50,112	56,816	70,101	· · · ·
Payback period (yrs)	2.82	1.00	1.00	0.82	0.00	0.00	0.00	0.00	0.00	0.00	

18

1.10.3 Sensitivity Study

Micon tested the sensitivity of the base case after-tax IRR and NPV5 to changes in metal price, operating costs and capital investment for a range of 30% above and below base case values. The impact on NPV5 to changes in other revenue drivers such as gold grade of material treated and the percentage recovery of gold from processing is equivalent to gold price changes of the same magnitude, so these factors can be considered as equivalent to the price sensitivity.

Figure 1.2 and Figure 1.3 respectively show the impact on NPV5 and IRR of changes in each factor separately. The charts demonstrate that the Project remains viable across the range of sensitivity tested. Nevertheless, it is most sensitive to gold price, with a reduction of 18% reducing NPV5 to near zero. The Project is less sensitive to operating costs, with an increase of 25% reducing NPV5 to near zero, while a 25% increase in capital expenditure reduces NPV5 by only 12.5% to US \$41.7 million

Figure 1.2 Sensitivity of After-Tax NPV₅

Figure 1.3 Sensitivity of After-Tax IRR

1.11 CONCLUSIONS AND RECOMMENDATIONS

1.11.1 Mineral Resource Estimation Conclusions

The QPs consider that the mineral resource estimate reported herein is robust enough that it can be used as the basis of further economic studies, as Sonoro continues to define the nature and extent of the mineralization at the Cerro Caliche Project through further exploration programs.

1.11.2 Budget for Further Exploration

Sonoro plans to complete targeted infill drilling at the El Colorado and Guadalupe vein zones. The May, 2022 drilling program demonstrated multiple high-grade ore shoots within these vein zones. This drilling program will assist in the structural understanding of the complexity of the mineralized zone and potentially increase the grade of the Project's gold mineralization. In total, Sonoro plans to spend a total of approximately US \$775,000 on completing a 10,000 m infill drilling program.

Micon and D.E.N.M. QPs have reviewed and discussed Sonoro's proposal for further exploration on the Cero Caliche property. Micon and D.E.N.M. QPs recommend that Sonoro conducts the exploration program as proposed, subject to funding and any other matters which may cause the proposed exploration program to be altered in the normal course of its business activities or alterations which may affect the program because of exploration activities themselves.

Considering the amount of exploration and infill drilling conducted by Sonoro to outline the current mineral resource at the Cerro Caliche Project, Micon and D.E.N.M. consider that further exploration

drilling to assist in fully defining the mineralized areas within southern and northeastern extensional areas is warranted.

1.11.3 Recommendations

Micon and D.E.N.M. QPs agree with the general direction of Sonoro's exploration and development program for the property and make the following additional recommendations:

1.11.3.1 Database and Exploration

- 1) Improve the database and data management system to increase the data integrity, flow, use and management of all information related to the Project.
- 2) Review and improve the QA/QC procedures for drilling, specifically items related to control sample insertion, to improve the assessment of potential cross-contamination and insertion of duplicates within the mineralized zones. This includes improving procedures to evaluate laboratory results periodically during drilling programs to identify any potential issues immediately and apply corrective action.
- 3) Institute a systematic methodology to measure and record specific gravity (SG) throughout the entire drilled section during future core drilling programs.
- 4) Review logging techniques to incorporate adequate data information in some areas, such as geotechnical logging, as well as standardizing the terminology and, if necessary, introducing the use of applicable domains from the geological model.
- 5) Investigate the source and impact of any difference between the original and duplicate samples and take corrective action to minimize this effect.

1.11.3.2 Metallurgy and Processing

Table 1.6 summarizes a proposed budget for further metallurgical testwork and development work.

Description	\$USD
Metallurgical Testwork (ROM Leach Testing)	\$100,000
Pre-Feasibility Study	\$370,000
Sub-Total	\$470,000
Contingency (15%)	\$70,500
Total	\$540,500

Table 1.6 Budget for Further Metallurgical and Development Work

Source: D.E.N.M. (2023)

1.11.3.3 Mining

Conduct further optimization work to assist in potentially reducing costs and increasing efficiencies of mining related to the Project.

2.0 INTRODUCTION

2.1 GENERAL

Sonoro Gold Corp. (Sonoro) has retained Micon International Limited (Micon) to assist with undertaking a Preliminary Economic Assessment (PEA) for its Cerro Caliche Project located in the Mexican State of Sonora Micon has also been retained to compile this Technical Report to disclose the results of the PEA, in accordance with the requirements Canadian National Instrument (NI) 43-101, Standards of Disclosure for Mineral Projects.

A PEA is preliminary in nature and includes inferred mineral resources that are considered too speculative geologically to have the economic considerations applied that would enable them to be classified as mineral reserves, and there is no certainty that the preliminary assessment will be realized.

In this report, the term Cerro Caliche Project refers to the areas within the exploitation or mining concessions upon which historical exploration and mining has been conducted, while the term Cerro Caliche property refers to the entire land package controlled by Sonoro.

The information in this report has been derived from published material, as well as data, professional opinions and unpublished material submitted by the professional staff of Sonoro or its consultants, supplemented by the Qualified Person(s) (QPs) independent observations and analysis. Much of the data came from prior reports for the Cerro Caliche Project, updated with information provided by Sonoro, as well as information researched by the QPs.

None of the QPs contributing to this report has or had previously had any material interest in Sonoro or related entities. The relationship with Sonoro is solely a professional association between the client and the independent consultants. This report has been prepared in return for fees based upon agreed commercial rates and the payment of these fees is in no way contingent on the results of the reports.

This report includes technical information which requires subsequent calculations or estimates to derive sub-totals, totals and weighted averages. Such calculations or estimations inherently involve a degree of rounding and consequently introduce a margin of error. Where these occur, the QPs do not consider them to be material.

This report is intended to be used by Sonoro in accordance with the terms and conditions of its agreement with Micon. That agreement permits Sonoro to file this report as a Technical Report with the Canadian Securities Administrators (CSA) pursuant to provincial securities legislation or with the Securities and Exchange Commission (SEC) in the United States.

The conclusions and recommendations in this report reflect the QPs' best independent judgment in light of the information available to them at the time of writing. The QPs and Micon reserve the right, but will not be obliged, to revise this report and its conclusions if additional information becomes known to them subsequent to the date of this report. Use of this report acknowledges acceptance of the foregoing conditions.

2.2 QUALIFIED PERSONS, SITE VISIT, AND AREAS OF RESPONSIBILITY

The authors of this report and the Qualified Persons (QPs) are:

- David J. Salari, P. Eng., President of D.E.N.M. Engineering Ltd.
- William J. Lewis, B.Sc., P.Geo., a Director and Senior Geologist with Micon.
- Christopher Jacobs, CEng, MIMMM, President of Micon.
- Kerrine Azougarh, P.Eng., Principal Mining Engineer with Micon.
- Douglas Reid, P.Eng., Principal Consultant (Resource Geology) with SRK Consulting (U.S.) Inc.
- Scott Bukett, B.Sc. SME, Principal Consultant (Resource Geology) with SRK Consulting (U.S.) Inc.

Table 2.1 identifies the authors of this Technical Report, the sections of the report for which they are responsible and those who have undertaken a site visit.

Qualified Person	Employer	Technical Report Sections	Site Visit Dates
David J. Salari, P.Eng.	D.E.N.M. Engineering Ltd	Sections: 1.1,1.7,1.9.2, 1.9.3, 1.10.2, 1.11.3.2, 1.11.3.4, 2.1, 2.2, 13, 17, 18, 21.1, 21.1.2, 21.1.3, 21.1.4, 21.1.5, 21.6.2, 21.2, 21.2.1, 21.2.2, 21.2.3, 24.1.1, 24.1.2, 25.2.1.2, and 24.2.1.3	Jul-26, 2001
William J. Lewis, P.Geo.	Micon International Limited	Sections 1.2 to 1.4, 1.11.2, 2, 3, 19, 20, 26.1 and 28	None
Kerrine Azougarh, P.Eng.	Micon International Limited	Section 1.9.1, 15, 16 and 25.2.1.1	None
Christopher Jacobs, CEng, MIMMM,	Micon International Limited	Section 1.10, 22 and 25.2.2	None
Douglas Reid, P.Eng.	SRK Consulting (U.S.) Inc.	Geology portions of Sections 1, 2, 3, all of Sections 10, 11, 12, 14, and 23, portions of Sections 25 and 26.	Nov 4-5, 2022
Scott Bukett, B.Sc. SME	SRK Consulting (U.S.) Inc.	Geology portions of Sections 1, 2, 3, all of Sections 4, 5, 6, 7, 8, 9, and portions of Sections 14, and 26.	Nov 4-5, 2022

Table 2.1 Report of Authors and Co-Authors

2.3 UNITS AND CURRENCY

All currency amounts are stated in US dollars (USD) unless otherwise specified. Quantities are generally stated in metric units, the standard Canadian and international practice, including metric tons (tonnes, t) and kilograms (kg) for weight, kilometres (km) or metres (m) for distance, hectares (ha) for area, grams (g) and grams per metric tonne (g/t) for gold and silver grades (g/t Au, g/t Ag).

Wherever applicable, Imperial units have been converted to Système International d'Unités (SI) units for reporting consistency. Precious metal grades may be expressed in parts per million (ppm) or parts per billion (ppb) and their quantities may also be reported in troy ounces (ounces, oz), a common practice in the mining industry. A list of abbreviations is provided in Table 2.2.

Name	Abbreviation
Agnico Eagle Mines Ltd.	Agnico Eagle
ALS-Chemex or ALS Laboratories or ALS Global	ALS
Anaconda Copper Co.	Anaconda
Bureau Veritas	BVI
Cambior Inc.	Cambior
Canadian Institute of Mining, Metallurgy and Petroleum	CIM
Canadian National Instrument 43-101	NI 43-101
Canadian Securities Administrators	CSA
Centimetres(s)	cm
Copper	Cu
Corex Gold Corporation	Corex
Degree(s), Degrees Celsius	°, °C
D.E.N.M. Engineering Ltd.	D.E.N.M.
Digital terrain model	DTM
Freeport-MacMoran Copper	Freeport
Gold	Au
Grams per metric tonne	g/t
Hectare(s)	ha
Hour	h
Inch(es)	in
Inductively Coupled Plasma – Emission Spectrometry	ICP-ES
Internal diameter	ID
Kilogram(s)	kg
Kilometre(s)	km
Laboratorio Tecnológico de Metalurgía	LTM
Layne de Mexico S.A. de C.V.	Layne
Lead	Pb
Life-of-mine	LOM
Litre(s)	L
McClelland Laboratories Inc.	McClelland
Metre(s)	m
Mexican peso	MXN
Micon International Limited	Micon
Million (eg million tonnes, million ounces, million years)	M (Mt, Moz, Ma)
Milligram(s)	mg
Millimetres(s)	mm
Millrock Resources	Millrock
Net present value, at discount rate of 5%/y	NPV, NPV5

Table 2.2 List of Abbreviations

Name	Abbreviation
Net smelter return	NSR
Not available/applicable	n.a.
Ounces (troy)/ounces per year	oz, oz/y
Paget Southern Resources S. de R.L. de C.V.	Paget
Parts per billion, parts per million	ppb, ppm
Pembrook Mining Corp.	Pembrook Mining
Percent(age)	%
Phelps Dodge Copper Co.	Phelps Dodge
Professional Engineer	P.Eng.
Quality Assurance/Quality Control	QA/QC
Qualified Person	QP
Reverse Circulation	RC
Rocklabs Ltd.	Rocklabs
Rock Quality Determination(s)	RQD
Run of mine	ROM
Sidney Mining and Exploration	Sidney
Sierra Madre Occidental	SMO
Servicio Geologico Mexicano	SGM
Sonoro Gold Corp.	Sonoro
Specific gravity	SG
Square kilometre(s)	km2
Standard Refence Materials	SRM
Système International d'Unités (SI)	SI
System for Electronic Document Analysis and Retrieval	SEDAR
Three-dimensional	3-D or 3D
Tonne (metric)/tonnes per day, tonnes per hour	t, tpd, t/hr
Tonne-kilometer	t-km
Tonnes per cubic metre	t/m3
TSL Laboratories Inc.	TSL
United States Dollar(s)	USD
US Securities and Exchange Commission	SEC
Universal Transverse Mercator	UTM
Value Added Tax (or IVA)	VAT or IVA
Year	У

The descriptions of geology, mineralization and exploration used in this report are taken from reports prepared by various organizations and companies or their contracted consultants, as well as from various government and academic publications. The conclusions of this report are based in part on data available in published and unpublished reports supplied by the companies which have conducted exploration on the property, and information supplied by Sonoro.

The information provided to Sonoro was supplied by reputable companies. Neither D.E.N.M. nor Micon have any reason to doubt its validity and have used the information where it has been verified through its own review and discussions.

Micon and D.E.N.M. are pleased to acknowledge the helpful cooperation of Sonoro's management and consulting field staff, all of whom made all data requested available and responded openly and helpfully to all questions, queries and requests for material.

Some of the figures and tables for this report were reproduced or derived from historical reports written on the property by various individuals and/or supplied to Micon and D.E.N.M. by Sonoro or its personnel for this current report. In the cases where photographs, figures or tables were supplied by other individuals or Sonoro, they are referenced below the inserted item. Most figures supplied by Sonoro were produced by Oscar Gonzalez, Chief Geologist of Sonoro.

3.0 RELIANCE ON OTHER EXPERTS

In this report, discussions regarding royalties, permitting, taxation and environmental matters are based on material provided by Sonoro. Micon and D.E.N.M QPs are not qualified to comment on such matters and have relied on the representations and documentation provided by Sonoro for such discussions.

All data used in this report were originally provided by Sonoro. Micon's QPs have reviewed and analyzed those data and have drawn their own conclusions therefrom, augmented by their direct field examinations during the various site visits.

Micon and D.E.N.M. QPs offer no legal opinion as to the validity of the title to the mineral concessions claimed by Sonoro and have relied on information provided to them Sonoro has previously provided to Micon and D.E.N.M. a summary of title opinions that were conducted by Justo Rafael Romero Diaz an independent lawyer with expertise in mining laws and regulations located in Mexico City.

4.0 PROPERTY DESCRIPTION AND LOCATION

4.1 **PROPERTY LOCATION**

The Cerro Caliche Project is located in the Cucurpe Municipality of Sonora State in northwestern Mexico, approximately 240 km northwest of the capital city of Hermosillo and approximately 160 km south of Tucson, Arizona, USA. Figure 4.1 shows the approximate location of the Cerro Caliche Project in relation to neighbouring mines and deposits.

The centre of the mineralized zone has the following Universal Transverse Mercator (UTM) coordinates: 3,365,200 N, 536,600 E and the datum used was NAD 27, UTM Zone 12.

The mineralized area consists of repeating northwest trending vein zones that occur from the western side of the property to the eastern side. Several of these zones are shown in the district map, Figure 4.1.

Figure 4.1 Location Map for the Cerro Caliche Project

Source: Sonoro Gold (2023)

4.2 PROPERTY DESCRIPTION AND OWNERSHIP

The Cerro Caliche Project is comprised of 15 contiguous mining concessions covering a total of 1,350.10 ha. **Error! Reference source not found.** shows the location of the mineral concessions in relationship to each other and Table 4.1 provides details of the 15 concessions that are 100% owned or held under Option to Purchase or Assignment agreements, by Sonoro's wholly owned Mexican subsidiary, Minera Mar De Plata, S.A. de C.V. (MMP).

Figure 4.2 Concession Map of the Cerro Caliche Project

Source: Sonoro Gold (2021)

The surrounding area is used primarily for cattle ranching and is punctuated by numerous historical inactive mine workings comprised mainly of small pits and tunnels, with some underground development.

Sonoro Gold Corp.

Table 4.1 Cerro Caliche Concessions

Option Agreement	Concession Name	Title Numbe r	Area (Ha)	Royalty (%)	Concession Loca Holder(s) Da		Expiry Date	Bi-Annual Fees (MXN)
	Abel	220838	147.98		Juan Pedro Fernández Duarte	15-Oct-2003	14-Oct-2053	52,063
	Abel Fracc II	220658	11.89		Juan Pedro Fernández Duarte	9-Sep-2003	8-Sep-2053	4,187
	Abel Fracc I	220657	99.09		Juan Pedro Fernández Duarte	9-Sep-2003	8-Sep-2053	34,864
	El Huevo de Oro	220208	510.84		Juan Pedro Fernández Duarte	24-Jun-2003	23-Jun-2053	179,715
Corro Colicho	El Huevo de Oro	212857	10.00	2	Juan Pedro Fernández Duarte	31-Jan-2001	30-Jan-2051	3,520
Cerro Caliche	Guadalupe	211715	24.59	2	Juan Pedro Fernández Duarte	30-Jun-2000	29-Jun-2050	8,655
	Huevo de Oro No.1	222098	3.30		Juan Pedro Fernández Duarte	11-May-2004	10-May-2054	1,164
	Huevo de Oro No. 2	222099	0.03		Juan Pedro Fernández Duarte	11-May-2004	10-May-2054	23
	Teresita	222160	99.33		Juan Pedro Fernández Duarte	25-May-2004	24-May-2054	34,949
	Teresita	220210	0.59		Jan Pedro Fernández Duarte 24-Jun-2		23-Jun-2053	210
Cabeza Blanca	Cabeza Blanca	175488	10.00	NA	Minera Mar de Plata (MMP)	31-Jul-1985	30-Jul-2035	3,520
El Colorado	El Colorado	177317	9.00	NA	Minera Mar de Plata (MMP)	18-Mar-1986	17-Mar-2036	3,169
Tres Amigos	Tres Amigos	166174	20.00	NA	Minera Mar de Plata (MMP)	9-Apr-1980	8-Apr-2030	7,038
Pocario	El Centro	221094	3.77		Edward Rivas Hoffman	19-Nov-2003	18-Nov-2053	1,332
NUSATIU	El Rosario Fraccion I	221148	399.69	2	Edward Rivas Hoffman	3-Dec-2003	2-Dec-2053	140,615
		Total:	1,350.1 0				Total:	475,024

4.2.1 Option Agreements

4.2.1.1 Cerro Caliche Concessions Option Agreement

On January 23, 2018, Sonoro's subsidiary MMP entered into an Option to Purchase agreement with Juan Pedro Fernández Duarte, a resident of Hermosillo, Sonora, Mexico, to acquire a 100% interest in 10 claim titles for total consideration of US \$2,977,000, payable in installments over 72-months (Table 4.2). On March 23, 2022, the agreement was registered with the Mexican Mining Public Registry (MPR).

Payment Date	Payment Amount (USD)	Payment Status
19-Dec-2017	10,000	Paid
23-Jan-2018	117,000	Paid
23-Jan-2019	200,000	Paid
23-Jan-2020	300,000	Paid
23-Jul-2020	200,000	Paid
23-Jan-2021	200,000	Paid
23-Jul-2021	250,000	Paid
23-Jan-2022	250,000	Paid
23-Jul-2022	300,000	Paid
23-Jan-2023	300,000	Paid
15-Sept-2023	200,000	Paid
31-Dec-2023	200,000	
23-Jan-2024	450,000	
Total:	2,977,000.00	

Table 4.2Cerro Caliche Concessions Payment Plan

The group of 10 mining concessions covers a total area of 907.6 ha and consists of Abel (T-220838), Abel Fracc. I (T-220657), Abel Fracc. II (T-220658), El Huevo de Oro (T-220208), El Huevo de Oro (T-212857), Guadalupe (T-211715), Huevo de Oro No. 1 (T-222098) and Huevo de Oro No. 2 (222099), Teresita (T-222160), and Teresita (T-220210).

Under the option agreement, 66% of the Abel (T-220838) claim was held by Juan Pedro Fernández Duarte while the remaining 33% was held by José Arturo Gálvez Magallanes. In a subsequent agreement dated, February 16, 2018, Juan Pedro Fernández Duarte acquired the remaining 33% interest from José Arturo Gálvez Magallanes' estate, in consideration of a one-time payment of \$300,000 Mexican pesos.

On April 8, 2022, MMP entered into a Purchase Agreement and Promissory Transfer of Rights Agreement with Juan Pedro Fernández Duarte to acquire a 100% interest in the Abel claim. On April 19, 2022, the agreement was registered with the MPR.

Following exercise of the Option, Juan Pedro Fernández Duarte retained a 2% net smelter return royalty (NSR) from the proceeds of the sale of minerals from the Cerro Caliche concessions. Under the agreement, MMP has the option to purchase the NSR at any time for US \$1,000,000 for each 1% of the 2% NSR.

On June 14, 2021, a Title Opinion provided by Justo Rafael Romero confirmed that the payments for the mining rights were in good standing.

4.2.1.2 Cabeza Blanca Concession Option Agreement

On October 5, 2018, MMP entered into an Option to Purchase agreement with Hector Fernando Albelais Peral, a resident of Magdalena de Kino, Sonora, Mexico, to acquire a 100% interest in the Cabeza Blanca claim title (T-175488) for total consideration of 250,000 common shares in the Company and US \$175,000 payable in installments over two-years (Table 4.3).

Payment Date	Payment Amount (USD)	Payment Status
5-Oct-2018	5,000	Paid
5-Nov-2018	20,000	Paid
5-Jan-2019	10,000	Paid
5-Oct-2019	70,000	Paid
5-Oct-2020	70,000	Paid
Total:	175,000	

Table 4.3Cabeza Blanca Concession Payment Plan

In October, 2020, MMP acquired the 100% interest in Cabeza Blanca concession by making the final payment and securing 100% title to the concession through the execution of an "Assignment of Title to Mining Concession Agreement."

On April 29, 2022, the Cabeza Blanca claim title was registered in favour of MMP with the MPR. There is no NSR royalty on the concession.

4.2.1.3 El Colorado Concession Option Agreement

On August 10, 2018, MMP entered into an Option to Purchase agreement with the estate of the late Felipe Albelais Varela of Magdalena de Kino, to acquire a 100% interest in the El Colorado claim title (T-177317) for total consideration of US \$100,000, with the initial payment of US \$50,000 issued on signing.

In February 2019, MMP acquired the 100% interest in El Colorado by making the final payment and securing 100% title to the concession through the execution of an "Assignment of Title to Mining Concession Agreement."

On February 17, 2023, the El Colorado title claim was registered in favour of MMP with the MPR. There is no NSR royalty on the concession.

4.2.1.4 Tres Amigos Concession Option Agreement

On May 2, 2018, MMP entered into an Option to Purchase agreement with Jesús Héctor Pavlovich Camou and Raúl Ernesto Seym Gutiérrez, residents of Magdalena de Kino, to acquire a 100% interest in the Tres Amigos claim title (T-166174) for total consideration of US \$130,000, payable in instalments over 48-months (Table 4.4).

In May 2022, MMP acquired a 100% interest in the Tres Amigos concession by making the final payment and securing 100% title to the concession through the execution of an "Assignment of Title to Mining Concession" agreement.

Payment Date	Payment Amount (USD)	Payment Made
29-May-2018	14,444	Paid
2-Nov-2018	14,444	Paid
2-May-2019	14,444	Paid
2-Nov-2019	14,444	Paid
2-May-2020	14,444	Paid
2-Nov-2020	14,444	Paid
2-May-2021	14,444	Paid
2-Nov-2021	14,444	Paid
2-May-2022	14,444	Paid
Total:	130,000	

Table 4.4 Tres Amigos Concession Payment Plan

On February 17, 2023, the Tres Amigos title claim was registered in favour of MMP with the MPR. There is no NSR royalty on the claim.

4.2.1.5 Rosario Concessions Option Agreement

On March 14, 2018, MMP entered into an Option to Purchase agreement with Edward Rivas Hoffman, a resident of Tucson, Arizona, to acquire a 100% interest in two claim titles for total consideration of US \$1,600,000, payable in instalments over 72-months (Table 4.5).

The Rosario claims cover a total area of 403.5 hectares and consist of El Centro (T-221094) and El Rosario Fraccion I (T-221148). Following exercise of the Option, Edward Rivas Hoffman retains a 2% NSR from the proceeds of the sale of minerals from Rosario. Under the agreement, Sonoro has the option to purchase the NSR at any time for US \$1,000,000 for each 1% of the 2% NSR.

Payment Date	Payment Amount (USD)	Payment Status
14-Mar-2018	60,000	Paid
14-Mar-2019	75,000	Paid
14-Mar-2020	90,000	Paid
14-Mar-2021	150,000	Paid
14-Mar-2022	300,000	Paid
31-Dec-2023	375,000	
14-Mar-2024	566,000	
Total:	1,616,000	

Table 4.5 Rosario Concession Payment Plan

A title opinion provided by Justo Rafael Romero on June 14, 2021, confirmed that payment for mining rights were in good standing and the Purchase Option Agreement in favour of MMP has been recorded with the MPR. On June 4, 2021, the MPR certified the Rosario claims as valid.

4.2.2 Surface Rights

Under Mexican law, mineral exploration rights are separate from surface rights and concession holders are required to negotiate with the landowner to access the land. Surface rights for the Cerro Caliche Project are controlled by the Rancho Cerro Prieto, a family-owned ranch owned by Sr. Fernando Padres Egurrola and legally represented by Sr. Carlos Matin Padres Contreras. On July 1, 2018, MMP entered into a seven-year surface rights agreement in consideration of annual payments of US \$48,800. Should the Project proceed to the mining operation stage, an additional surface rights agreement with the current property owner will be required.

The QPs have not independently verified surface ownership and have accepted the representations made by Sonoro which states that the landowner acquired the ranch on February 10, 2011. The notarized contract for the purchase is registered as public deed number 7656 book no. 59, volume XXI by public notary #49 Jose Alvarez Llera.

4.2.2.1 Mexican Mining Law

On May 8, 2023, the Mexican government enacted several amendments to the country's mining laws (Mining Law Reform) and has 180 days to formulate the corresponding set of rules. Under the new legislation, mineral exploration will be the exclusive responsibility of the Mexican Geological Service (MSG) and the current system for granting mining concessions will be replaced with a public bidding process. The Mining Law Reform also reduces the duration of mining concessions, restricts extraction of minerals to those described in the concession and implements multiple social and environmental requirements that must be met prior to granting the concession.

It is understood that these legislative modifications are only applicable to future situations and that the concessions held by MMP will not be significantly impacted by the new reforms. For the Cerro Caliche concession to remain valid, bi-annual fees of approximately MXN \$475,024 must be paid, and a report must be filed each May covering work conducted during the preceding year. Under the Mining Law

Reform, concession terms are reduced from 50 years to 30 years, with a one-time extension of 25 years. As the Cerro Caliche concessions were granted prior to the reform, the term will remain at 50-years but the extension is reduced from 50 years to 25 years. All mineral concessions must have their boundaries orientated astronomically north-south and east-west and the lengths of the sides must be 100 m or multiples thereof, except where these conditions cannot be satisfied because they border on other mineral concessions. The locations of the concessions are determined on the basis of a fixed point on the land, called the starting point, which is either linked to the perimeter of the concession or located thereupon. Prior to being granted a concession, the applicant must submit a topographic survey, completed by a DGM authorized licensed surveyor, and submitted within 60 days of staking.

Concessions may be granted to or acquired by Mexican individuals, local communities with collective ownership of the land, known as ejidos, and companies incorporated pursuant to Mexican law, with no foreign ownership restrictions for such companies. While the Mexican Constitution makes it possible for foreign individuals to hold mining concessions, the Mining Law does not allow it. This means that foreigners wanting to engage in mining in Mexico must establish a Mexican corporation or enter into a joint venture with a Mexican national or entity.

Mexican Mining Law also imposes a 7.5% annual tax on any profits from the extraction and sale of mineral commodities, and there is an additional 0.5% gross sales tax on mining production of gold, silver, and platinum.

Both taxes are in addition to the national corporate income tax rate of 30%.

4.3 PERMITTING AND ENVIRONMENTAL

Exploration and mining regulations in Mexico are controlled by the *Secretaria de Economia* (Secretariat of Economy) while required environmental permits are regulated and approved by the *Secretaria de Medio Ambiente y Recursos Naturales* (Secretary of the Environment and Natural Resources or SEMARNAT). As the Cerro Caliche Project is not included in any specially protected, federally designated ecological zones, basic exploration activities for the Project are regulated under NORMA Oficial Mexicana NOM-120-ECOL-1997 (NOM-120). NOM-120 permits the following activities: mapping, geochemical sampling, geophysical surveys, mechanized trenching, road building, and drilling. NOM-120 also defines impact-mitigation procedures to be followed for each activity. All exploration work conducted by Sonoro has adhered to NOM-120.

Mining construction and operation activities require a "Manifesto de Impacto Ambiental" (Environmental Impact Statement or MIA) as well as an "Autorizacion en Cambio de Uso de Suelo" (Change of Land Use Authorization or CUS), although the CUS is sometimes included as part of the MIA. Applications for a CUS must include a report summary of the biological and ecological characteristics of the affected area as well as compensation for the National Forestry Commission of Mexico. The amount of compensation is determined by the type of vegetation, degree of impact, and estimated cost to reclaim the disturbed surface area.

4.3.1 Environmental Liabilities

Several historical adits and trenches are observed in different regions of the property. Historical workings located in areas not being utilized by Sonoro, need to be surveyed and noted in the database prior to being properly closed and reclaimed. No evidence of recent mining work activities at the historical sites was observed during the 2022 site visit.

The QPs are not aware of any significant environmental liability. All exploration (drilling) access roads were still active and drill sites appeared clean, but not yet fully reclaimed. Some vestiges of plastic bags and black-cover plastic were observed and need to be removed during the reclamation period.

4.3.1.1 Required Permits and Status

On October 10, 2018, Sonoro announced it had been granted a two-year "Informe Preventivo Environmental Permit," in accordance with the NOM-120-SEMARNAT-2011, by SEMARNAT to drill 87 reverse-circulation holes, equivalent to approximately 10,000 m. The permit also granted approval for the construction of new drill pads and roads as well as approval to reuse earlier pads for new drill holes.

On December 2, 2020, Sonoro announced it had been granted a second environmental permit called "Cerro El Caliche 2da Etapa" to drill 258 reverse-circulation and core drill holes, equivalent to approximately 50,000 m. The permit also granted approval for the construction of new drill pads and roads as well as approval to reuse earlier pads for new drill holes. Sonoro applied for Change of Land Use (CUS) permit in 2021.

On May 5, 2022, the Company announced that it had filed its MIA permit application with SEMARNAT.

4.4 **QP** COMMENTS

Micon and D.E.N.M. QPs are not aware of any significant factors or risks besides those discussed in this report that may affect access, title or right or ability to perform work on the property by Sonoro or any other party which may be engaged to undertake work on the property by Sonoro. It is the QPs' understanding that further permitting and environmental studies would be required if the Project were to advance beyond the current exploration stage.

The Cerro Caliche Project area is large enough to accommodate the necessary infrastructure to support a mining operation, should the economics of the mineral deposits be sufficient to warrant proceeding with that decision. No significant environmental liability was observed by the QP during the 2020 site visit.

5.0 ACCESIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Cerro Caliche Project is accessible by flying into Tucson, Arizona and crossing into Mexico at the Nogales border crossing or by flying into Hermosillo, Sonora and driving north towards the property. The Project is accessed via the Mexican Federal Highway 15, a major transportation corridor between the US border to the north and major Mexican urban centres to the south. From the international border crossing at Nogales, Arizona, it is approximately 95 km to the town of Magdalena de Kino and, from Hermosillo, it is approximately 185 km to the town of Magdalena de Kino.

From Magdalena de Kino, travel 40 km southeast via a two-lane highway to the town site of Cucurpe, then another 14 km northeast on an unsurfaced all-weather road to a locked gate, From the gate, continue 4.8 km along a dirt road to reach the centre of the Project. Driving time from Magdalena de Kino to the Project area is one hour and 30 minutes and driving time from Hermosillo is three hours and 30 minutes. The mineralized areas and historical workings across the Project are accessible year-round by a network of trails and unpaved drill roads. (Figure 5.1). The access roads within the Project will need to be upgraded to support any future mining operations. Road access through the adjacent Cerro Prieto mine property, currently granted to MMP personnel, will likely require a future detour should the Project develop into an operation.

Figure 5.1 Access Road Near the Project

Source: Micon (2023)

5.1 CLIMATE AND PHYSIOGRAPHY

5.1.1 Climate

The Project is situated within the Sonoran Desert, an arid ecoregion that covers approximately 260,000 km² of the southwestern United States and northwestern Mexico, including most of the state of Sonora. The climate is considered semi-dry with an average annual temperature of 16.5 °C. During the summer months of June, July and August, the temperature averages 25.3 °C, with extreme values registered as

high as 49 °C. During the winter months of December and January, the temperature averages 8.3 °C, with extreme values registered as low as -7 °C.

Annual precipitation is approximately 500 mm with the rainy season occurring between July and September, with maximum rainfall in July reaching 142.2 mm. Exploration and mining activities are conducted year-round except during the occasional period of heavy rainfall resulting in a few of the unpaved dirt roads becoming temporarily impassable.

Basic temperature, as well as monthly temperature and precipitation statistics are shown in Table 5.1 Monthly Average Minimum and Maximum Temperatures and Rainfall and Figure 5.2 Minimum and Maximum Average Temperature & Rainfall. The data correspond to the 1981-2010 period and are from nearby weather stations at Cucurpe, located 14 km to the southwest and Querobabi, located 53 km to the southwest.

Temperatures (°C)	Monthly Average Max Temperature (°C)													
Weather Station	Period	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Agu	Sep	Oct	Nov	Dec	Annual
Cucurpe	1981-2010	20.7	22.4	25.9	29.8	34.2	37.7	36.6	36.1	34.9	31.7	25.6	20.5	29.7
Querobabi	1981-2010	23.5	25.2	28	31.3	35.8	39.7	38.4	37.4	36.8	32.1	27.3	22.7	31.5
Temperatures (°C)	Temperatures (°C) Monthly Average Min Temperature (°C)													
Weather Station	Period	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Agu	Sep	Oct	Nov	Dec	Annual
Cucurpe	1981-2010	3.1	4.2	6	8.6	12.5	16.8	19.6	19.4	17.2	11.6	6.2	2.8	10.7
Querobabi	1981-2010	3.2	4.3	5.8	8	11.6	17.4	21.8	21.6	19	11.8	6.4	3	11.2
Average Rain (mm)	Average Rain (mm)													
Weather Station	Period	Jan	Feb	Mar	Apr	May	Jun	Jul	Agu	Sep	Oct	Nov	Dec	Annual
Cucurpe	1981-2010	41.6	31.4	20.8	11.1	4.6	23.5	149.2	120	69.9	31.3	26.5	46.6	576.5
Querobabi	1981-2010	19.3	15.6	13.9	7	2.4	14.2	138.5	115	54.6	32.8	19.8	26.3	459.4

 Table 5.1

 Monthly Average Minimum and Maximum Temperatures and Rainfall

Source : https://smn.conagua.gob.mx/tools/RESOURCES/Normales8110/NORMAL26074.TXT https://smn.conagua.gob.mx/tools/RESOURCES/Normales8110/NORMAL26025.TXT

Sonoro Gold Corp.

Figure 5.2 Minimum and Maximum Average Temperature & Rainfall

ource : https://smn.conagua.gob.mx/tools/RESOURCES/Normales8110/NORMAL26074.1X1 https://smn.conagua.gob.mx/tools/RESOURCES/Normales8110/NORMAL26074.1X1

Weather conditions allow for exploration and mining operations year-round, with occasional work restrictions during the heavier rains of summer. However, given the current drought conditions throughout the Southern US and Northern Mexico due to climate change, hotter and dryer conditions as well as wetter periods could potentially occur in the coming decades.

5.1.2 Physiography

Located within the Sonoran Basin and Range Province, the Project's surrounding physiography is characterized by narrow, north-northwest trending, fault-bounded mountain chains separated by broad flat valleys of elongated, northwest-trending ranges separated by wide alluvial valleys.

Vertical relief is approximately 670 m with a maximum elevation of 1,750 m at the Cerro Caliche peak located in the northeast region of the Property and a minimum elevation of 1,080 m in the arroyos draining system located in the southern region of the Project. A radial dendritic drainage pattern with moderate hill slopes can also be found within the Project's central region. Vegetation throughout the Project is dominated primarily by short grasses, mesquite and ocotillo shrubs, and nopal cactus.

5.2 LOCAL RESOURCES AND INFRASTRUCTURE

The state of Sonora has a well-established transportation infrastructure, skilled labour force and developed industries, including mining, agribusiness and renewable energy. The state is also a major manufacturing hub due to its strategic location along the trade corridor between the US and Mexico, as well as the North American Free Trade Agreement (NAFTA) and subsequently revised United States-Mexico-Canada Trade Agreement (USMCA)

The nearby Municipality of Cucurpe, 14 km southwest of the Project, is an established mining district with a skilled workforce and two high-capacity electric transmission lines, one of which extends to the Cerro Prieto mine located adjacent to the Project's western boundary, while the second transmission line extends to the Mercedes Mine, located 10 km to the southeast of the Project. The town of Magdalena de Kino, 54 km to the northeast, offers basic services and provisions, including telecommunication, accommodation, restaurants and gasoline. The capital city of Hermosillo, 240 km to the southeast, is a major supplier of equipment and services to the region's mining sector with additional supplies shipped from Tucson, Arizona if needed.

Due to Mexico's well established mining sector, the Project can attract and retain skilled labour and mining professional for both exploration activities and future mining operations.

The Cerro Caliche Project and the surrounding area belong to the Rio San Miguel aquifer, identified with the code 2625 by the *National Commission of Water* (CONAGUA, or Comisión Nacional del Agua). The water balance completed in 2020 by CONAGUA indicated that the annual recharge of this aquifer is 68.7 hm³ per year. Total underground water extraction was calculated (2020) as 64.2 hm³ per year, while the natural discharge was estimated at 2.2 hm³. The analysis concluded that the amount of 2.3 hm³ per year remains available for new concessions for underground water extraction.

If brought to production, Cerro Caliche will be a water user, as typically from a heap leach operation in the Sonora region of Mexico. The main make-up water requirement demands will be determined by the loaded heap pad wetting and irrigation, and evaporation in the area. The expected evaporation rate in the area is high and has been factored into the preliminary water balance.

Annual precipitation in the area is 500 mm, as noted above, with precipitation experienced in July of 142 mm. Water diversion and management will be important If the property is brought to production.

Process make-up water requirements will be via surface drilled wells located within close proximity to the property. The calculated maximum water make-up requirements for the Cerro Caliche Project will be 623 km³ per year for the 12,000 t/d processing rate (Years 3-8).

The power source for the Project will be via two 750 kw generators for years one and two and via a new line from a 33 kV transmission line located approximately 24 km from the Cerro Caliche property. Commission Federal de Electricity (CFE) controls this main medium voltage line and discussions have outlined installation costs for a power line and associated switch gear. Electricity consumption for the process plant is estimated to be 14,559 MWh per year during years three through nine.

6.0 HISTORY

6.1 SONORO GOLD CORP., COMPANY HISTORY

Sonoro Gold Corp. was incorporated in Ontario in November, 1944, under the name Independent Mining Corporation Limited. In 1997, the Company was listed on the Canadian Dealing Network (CDN) and traded under the symbol "IDEI." In 2000, the Company changed its name to "Independent Enterprises Ltd." and commenced trading on the TSX Venture Exchange under the symbol "YID."

In 2003, the Company changed its name to Becker Gold Mines Ltd. and traded under the symbol "YBG" until early 2004 when the symbol changed to "BGD." In 2007, the Company continued into British Columbia and traded under the symbol "BGD" on the NEX Exchange until early 2009, when the symbol changed to "BDF."

In 2011, the Company acquired Cap Capital Corp. ("Cap Capital"), a company incorporated under the laws of British Columbia. Cap Capital holds 99% of the issued and outstanding shares of the subsidiary MMP which controls the Cerro Caliche Project.

In 2012, the Company changed its name to Sonoro Metals Corp. and traded on the TSX Venture Exchange under the symbol "SMO." In September, 2020, the Company changed its name to "Sonoro Gold Corp." and commenced trading on the TSX Venture Exchange under the symbol "SGO.

6.2 **PRIOR OWNERSHIP AND OWNERSHIP CHANGES**

The Mexican State of Sonora was an historically important mining area and, until the start of the Mexican war of Independence in 1810, was one of the largest contributors to the Spanish Crown. Mexico gained independence in 1821 and in 1824 Sonora became a state under the Mexican Constitution, although the war left the state economically and militarily weak. Many of the workings and mining communities were destroyed and those still operating were often raided and abandoned. The sector began to revive towards the end of the 19th century, when large investments from US companies reopened many of the gold, silver and copper mines.

The Cerro Caliche Project has been the subject of exploratory work and artisanal mining since the 1800's. Despite the scarcity of records, numerous small scale prospecting pits, as well as shallow shafts and adits are evident throughout the property (**Error! Reference source not found.**) with several of the workings now overgrown with thick vegetation. Historical records describing activities are not available. Modern exploration is summarized in Sections 10.0 and 11.0 of this report.

Historical records and open-source data, including information from the Anaconda Copper Co. (Anaconda), indicate that modern exploration activities at Cerro Caliche were carried out as early as the 1930s. In 1992, the federal Mexican government's publication "Geological-Mining Monograph of the State of Sonora" listed numerous veins identified in the Cucurpe District, including the following historical workings from the Cerro Caliche Project: Cabeza Blanca, Los Japoneses, El Colorado, and Buena Suerte.

Figure 6.1 Old Adit Entrance and Surface Mining Works, Cabeza Blanca Area

Exploration work performed by members of the Albelais family within the Cabeza Blanca and El Colorado zones consisted of gambusino mining from the early 1950's through 1990. Small scale underground mining in the area of the two concessions yielded minor production which involved truck loads of selected quartz vein mineralized material being hauled to smelters at Cananea and sold as precious metal bearing quartz flux.

Adjacent to the Project, the Phelps Dodge Copper Co. (now Freeport-McMoran Copper (Freeport)) briefly held a large concession, La Vista, over a large part of the Project area in 1994, as part of the expanded exploration around the Santa Gertrudis mine. The Santa Gertrudis gold deposit was discovered by Phelps Dodge in 1986 and developed into a heap-leach gold mine that began production in 1991. Phelps Dodge sold part of the mine to Campbell Resources in 1994. Before the Santa Gertrudis mine was shut down in 2000 due to low gold prices, it had produced 564,000 oz. gold. Agnico Eagle Mines Ltd. (Agnico Eagle) acquired the Santa Gertrudis mine in 2017 and continues to conduct exploration activities at the property. Due to the proximity of the Santa Gertrudis mine to the Project, common infrastructure, such as access roads, are shared.

Source: Sonoro (2023)

Sonoro Gold Corp.

6.3 **PROJECT HISTORICAL EXPLORATION AND DEVELOPMENT RESULTS**

Figure 6.2 shows both historical sampling completed on the property, as well as the results of gold analyses on the Project.

Figure 6.2 Historical Surface Samples at Cerro Caliche

Figure 6.3 shows the location of historical drilling completed prior to Sonoro ownership in 2018, including RC drilling and diamond drilling for core sampling (Paget Southern program).

Source: Sonoro Gold, 2021

Figure 6.3 Historical Drill Holes at Cerro Caliche

Source: Sonoro Gold, 2021

6.3.1 Cambior Inc. Exploration (1990s)

Cambior Inc. (Cambior), a publicly listed Canadian mining and exploration company acquired by IAMGOLD in 2006, conducted an exploration campaign on two mineralized areas of the Project. Between 1997 and 1998, Cambior drilled 27 RC holes and conducted an extensive surface geochemical sampling program at the El Colorado and Los Japoneses mineralized zones.

Despite identifying large quantities of gold mineralization, Cambior abandoned the Project in 1998. Sonoro acquired the data from 15 RC drill holes in 2020.

6.3.2 Sidney Mining and Exploration, Exploration (2000s)

Sidney Mining and Exploration (Sidney) obtained an option on part of the concessions circa 2000 and conducted a surface sample program on certain areas of the Project in the early 2000s. The data were obtained by Millrock Resources and acquired by Sonoro in 2019. This is discussed in more detail in Sections 10.0 and 11.0.

6.3.3 Corex Exploration (2007 to 2008)

Corex Gold Corporation (Corex), a publicly listed Canadian exploration company acquired by Minera Alamos in 2018, acquired most of the Project's concessions in 2007. Through its wholly owned subsidiary, Corex Global S.A. de C.V., (Corex Global), Corex completed a 7,725 m RC drilling campaign, including a detailed geologic mapping and sampling program with over 1,870 rock, channel and continuous chip samples. Corex abandoned the Project in 2008. In 2018, Sonoro acquired the drilling data, geologic mapping and rock sample database. Details and results of this work are further discussed in Sections 10.0 and 11.0.

6.3.4 Paget Southern Resources, Exploration (2011)

Paget Southern Resources S. de R.L. de C.V. (Paget), a wholly owned subsidiary of Pembrook Mining Corp. (Pembrook Mining), acquired a number of the Project's concessions in 2011. Paget completed a 3,037 m drilling campaign with 18 diamond drill core holes, 1,627 rock chip samples and 1,250 soil samples.

Exploration was focused on the Los Japoneses mineralized zone, with additional drilling completed in the adjacent Batamote zone located 300 m outside the Project's northwest boundary. Pembrook sold Paget to Millrock Resources (Millrock) in 2014 and in 2018, Sonoro acquired the drilling database from Millrock. Details and results of this work are further discussed in Sections 10.0 and 11.0.

6.3.5 Sonoro Gold Corp. (2017 to Present)

In 2017, Sonoro executed a Purchase Option Agreement and initiated a soil sampling program on four concessions adjacent to the southwestern corner of the Project. Although these concessions were later dropped, the work identified the potential mineralization of the area and led to the 2018 acquisition of the Project's current concession holdings.

In September, 2018, Sonoro initiated a 10,000 m drilling program at Cerro Caliche with the completion of 96 dry RC drill holes and 2,118 outcrop samples. The program outlined a broad area of gold mineralized low-sulphidation epithermal vein structure that confirmed the presence of at least 18 to 25 northwest trending shallow gold mineralized zones.

In September, 2020, Sonoro commenced a 25,000 m RC and diamond drilling program designed to demonstrate a material expansion of the concession's oxide gold mineralization, sufficient to support an open pit, heap leach mining operation. As of mid-2021, Sonoro has completed 266 RC drill holes and 48 core drill holes, totaling 34,550 m drilled at the Project within three years.

In November, 2021, Sonoro commenced a 7,200 m drilling program completing another 63 RC drill holes which returned multiple higher-grade gold intercepts and demonstrated the expansion of several known mineralized gold zones within the Cerro Caliche concession. In addition to drilling, 2,125 additional outcrop samples were collected. In August, 2022, Sonoro completed an underground channel sampling program at the Cabeza Blanca mineralized gold zone, located in the southwestern part of the property. Results provide important geological data from a 100 m section situated along the south end of the Cabeza Blanca vein zone as it enters the El Colorado mineralized zone.

6.4 HISTORICAL RESOURCE ESTIMATE

On June 23, 2022, Sonoro filed a Technical Report entitled "Updated Preliminary Economic Assessment of the Cerro Caliche Project, Sonora, Mexico". The Report was authored by D.E.N.M. Engineering Ltd. with an effective date of May 9, 2022. According to the Report, the mineral resources for the Cerro Caliche deposits were classified in accordance with the CIM Definition Standards for Mineral Resources and Mineral Reserves (May 2014).

The 2022 resource estimates are superseded by the resource estimates contained in Section 15.0 of this Technical Report, which were first disclosed in a Technical Report filed on March 27, 2023. The details for the prior mineral resource estimates will not be discussed further in this report.

6.5 HISTORICAL MINING AND PRODUCTION

The Cerro Caliche Project contains various historical mine workings, including small scale prospecting pits, shallow shafts, adits, and tunnels (**Error! Reference source not found.**). No records of production are available from any of the historically workings developed on the Project, which were limited to minor "gambusino" type work.

Figure 6.4 Historical Workings at Cerro Caliche

Source: Modified from Isidro Flores, Cerro Caliche (2018).

7.0 GEOLOGICAL SETTING AND MINERALIZATION

7.1 **REGIONAL GEOLOGY**

The Project lies west of the Sierra Madre Occidental (SMO) province, within Basin and Range subprovince that continues north into Arizona. The surrounding region contains several large sediment filled basins and the mineralized areas near Cucurpe lie within the Basin and Range physiographic province, where the timing of the epithermal mineralization is coincident to the development of many of the graben basins of the province.

The graben fault related basins are part of a regional Tertiary age extensional normal faulting episode that produced north-south to northwesterly oriented ranges and valleys. Figure 7.1 (SGM, 2006), published by Servicio Geologico Mexicano, shows the Project area to contain Mesozoic metasedimentary rocks, with adjacent areas of Tertiary volcanic deposits common in the region. Part of the Tertiary volcanic rocks are shown to be also part of the SMO volcanic rock units.

The SMO province lies approximately 100 km east of the Cucurpe district as a north-south trending mountain range, made up of Oligocene-Miocene volcanics and terminating near the U.S.-Mexico border. The SMO contains many epithermal-style gold and silver occurrences.

A metamorphic core complex is located immediately west of the Project area, across the adjacent gravel filled graben basin valley. The metamorphic rocks underlie the adjacent north-south trending mountain range west of the Project shown in red in the left side of Figure 7.1.

7.2 **PROPERTY GEOLOGY**

The geological setting for the Cerro Caliche Project (Project) is comprised of Mesozoic metasedimentary rock units that have been subject to weak folding, with extensive fault activity. Metasedimentary rock units in the Cerro Caliche area mapped by the Servicio Geologico Mexicano (SGM) are identified as Jurassic age Cucurpe Group units. A large-scale mylonite zone, up to 20 m thick, represents a thrust fault that transects the Project, is crosscut by quartz veins, pervasive silicification and felsic intrusives. Meta-sedimentary, locally phyllitic, shales form the hangingwall, and dioritic to granodiorite with andesitic like fine grained units compose the footwall in the southwestern area of the Project.

Metasedimentary rocks are intruded by three igneous types, with the most mafic being a coarse-grained biotite granodiorite ranging from irregularly foliated to weakly lineated. The diorite and granodiorite are observed with common widespread propylitic alteration that may be associated with nearby quartz veins. The granodiorite appears to grade into a quartz-rich medium-grained granite forming the prominent outcrop in and near the Project's El Colorado vein, where it is commonly sericitic altered. Cross-cutting these rocks, and occasionally into the metasedimentary rocks, are irregular bodies of microdiorite, with common coarser variations to diorite and gabbro. These intrusive units are in the lower elevations of the Project's western region, more common below the thrust fault. Rhyolitic dikes and sills occur extensively on the Project, of which the youngest dikes follow the dominant northwest fault and vein orientation of the district (Figure 7.2). The rhyolite dikes cut all rock types in close association to quartz veins, including cutting the related rhyolite sills.

Figure 7.1 Regional Geology Map

Source: Cartas Geologico-Minera, SERVICIO GEOLOGICO MEXICANO: H12-B61 (2000), H12-B62 (2003), H12-B71 (2000), H12-B72 (1999).

Figure 7.2 Property Geology Map

Source: Source Gold (2023)

Structural development in the Project is complex, with low angle faulting modifying the geology after intrusion of diorite-granodiorite into the Jurassic meta-sedimentary rocks. The outcrop of the contact in the southwest area of the Project has a 3 m to 5 m thick mylonite trace trending about azimuth 90°, with 25° south dip and with locally intense silicification of porous mylonite near quartz veining. A similar low angle contact extends from the north end of the Guadalupe-Cabeza Blanca veins northward into the area below the La Gloria vein, where more plastic deformation character was observed in drill core.

7.3 MINERALIZATION

The gold and silver mineralization occurs mainly in fractured Mesozoic quartzites and shale rock units, as well as within the rhyolitic intrusive dikes and sills. Mineralization throughout most of the Project is associated with silicification, ranging from moderate silica addition to intense pervasive silica flooding.

The mineralization throughout the Project area occurs as typical low sulphidation epithermal style. Veins observed are open space filled quartz veins, with irregular banding and open vugs that are typical of low sulphidation epithermal gold-silver mineralization. The structures localizing the veins at the Project are developed within a broad listric faulting regime, producing a somewhat en-echelon vein structure repetition within a corridor that covers a 25 km² area around the Project. Individual structures observed on the Project have a maximum strike length of three kilometres with undetermined displacements. The vertical range of mineralization, based on topographic differences, is about 600 metres. Map plots of quartz veins illustrate the frequency of larger veins that imply a strong structural dependence, with some rhyolite dikes following them, possibly defining a rift extension zone. The dikes and veins continue outside the Project area in the Cerro Prieto mine area, and to the east towards the Mercedes Mine.

The two nearest operating mines in the same district are also described as Epithermal Low Sulphidation gold silver deposits. Both mines have similar veining character and have northwesterly oriented quartz precious metal veins

The current interpretation of the structural and mineralization development of the Project hypothesizes that a deeper intrusive stock underlays the district and is the source of mineralizing fluids and rhyolitic dikes. The interpreted normal deep faulting has provided a conduit for silica-rich mineralizing fluids, resulting in the deposition of quartz veins with gold and silver at the Project area, and localization of some rhyolite dikes. The Cerro Prieto mine also contains high a molybdenum content with gold silver mineralization that is suggestive of near source felsic intrusive (Bain, 2007).

The predominant northwest trending orientation of structures is an important feature of the Project area. More than 25 strong structures with at least 200 m of strike length are counted which have generally a parallel arrangement crossing the entire project concession area holdings. These structures developed ahead of vein deposition and rhyolite dike intrusion, which follow and fill the structures. Many veins show brecciation which indicates movement along the structures during vein formation.

In addition to the silicification, other alteration assemblages are noted on the Project. Argillic alteration is represented as weak to moderate clay development in feldspars and matrix of rhyolitic rocks. Limonite consisting of hematite with lesser goethite and jarosite is present and developed from oxidized sulphides, mainly cubic pyrite. In deeper more mafic rock types propylitic alteration is widespread.

7.4 STRUCTURAL SETTING

Detailed structural geological mapping and analysis completed in 2021 on the central portion of the Project concluded that the main trend of mineralized quartz veins is oriented north 20° to 50° west (azimuth 310° to 340°), with a secondary quartz vein system trend oriented north 30° to 50° east (azimuth 30° to 50°). Identified faults show a similar orientation to the main veins trend, implying repeated faulting activation along which veins, followed with filling.

A second structural trend, oriented north 20° to 50° east (azimuth 200° to 230°), is coincident with orientation of a few carbonate and quartz of veins but is mainly a post-mineralization fault trend. There

is a third fault system that trends east-west to west-northwest east-southeast (N60-90° W; azimuth 90° to 120°). Source: IMEx, (2021).

This trend cross-cuts the mineralized veins. Analysis of the fault kinematics data yielded a fault slip solution, with a north-south strike and an east-west extension related to the normal faulting. This could imply a relaxation pattern or weakness/stability zone in those same directions. Source: IMEx, (2021). The structural trends discussed above are graphically shown in Figure 7.3.

Flat veins seen in the El Colorado vein area are not measured in this analysis. Most detailed field data collected for this analysis are from the Japoneses, Buena Vista and Buena Suerte surface areas. Sonoro geologists speculate that flat veins are not compatible with structures observed in El Colorado area, unless normal listric structures vein fillings experienced a short episode of reverse faulting which may have occurred only in proximity to that area.

Figure 7.3 Veins and Faults Plots

Source: IMEx, (2021)

7.5 ALTERATION

The dominant alteration types observed at the Project consist of silicification, propylitization and sericite-clay alteration. Silicification is the most prominent alteration associated with the Project area vein systems. The alteration type and intensity vary within and proximal to the different vein/structural zones. The most intense silicification is observed within the primary veins and decreases out into the hanging wall and footwall host rocks. Wide zones of silicification and veining, up to 250 m, have been identified on the Project and are directly associated with zones of intense fracturing within the host structure(s) and adjacent host rocks.

Variable levels of propylitization affect the sedimentary and intrusive and extrusive igneous rocks located on the property. This alteration style is interpreted to be a result of the event responsible for

vein mineralization on the Project. The volcanic and sedimentary rocks range from nearly fresh to containing variable amounts of chlorite-calcite and local epidote.

Argillic alteration (sericite-clay) is generally present near vein zones and increases with intensity as it approaches the primary veins. Sonoro has not conducted a detailed analysis to define the clay mineralogy and zoning within the system.

7.6 SIGNIFICANT MINERALIZED ZONES

Exploration on the Project has focused on targeting the main mineralized vein zones which are named after their historic mine sites: the Los Japoneses mineralized zone with the related extensions of the Cuervos and Buena Vista mineralized zones, the Buena Suerte mineralized zone, the Chinos NW mineralized zone, the Abejas mineralized zone with the extensions of the Veta de Oro and El Rincón mineralized zones and possibly the Chinos Altos mineralized zones, and the Cabeza Blanca mineralized zone with the adjacent and connected Guadalupe and El Colorado mineralized zones. Located on the same northwest trending lineament approximately one kilometre apart are the relatively isolated vein zones of La Española and El Bellotoso. Exploration at these two mineralized zones has been minor but drilling results indicate favourable exploration potential. These zones are shown in Figure 7.4.

Figure 7.4 Named Vein Zones Area Location Map

Source: Sonoro Gold (2023)

7.6.1 Los Japoneses Zone (incl. Cuervos, Boludito, & Buena Vista)

The Los Japoneses mineralized zone is the largest vein zone in both width and length, as well as volume and is the most extensively drill defined vein zone on the property. To the south, the Cuervos vein zone appears as a southward continuation, as it follows the trend of the Los Japoneses vein in drill holes. To the north, the Boludito vein zone appears as a northward continuation and the Buena Vista vein zone occupies a fault breccia zone expanding the Los Japoneses vein zone to the northwest to merge with the Buena Suerte vein zone. Rhyolite dikes and quartzite are the main host rocks for these zones. See Figure 7.5.

7.6.2 Abejas Zone (incl. Veta del Oro and Rincon with Chinos NW & Chinos Altos)

North of the Los Japoneses vein zone, the geology and mineralization of the defined Veta de Oro vein zone extend south to the Abejas disseminated stockwork gold mineralized zone. As the Veta de Oro structure continues southeast, the structure splays into four separate 500 m long vein like bodies with numerous quartz veinlets. These terminate in an arroyo area located southeasterly, by a North 30° East post mineral low angle fault that offsets the southern block by apparently 40-50 m eastward. The offset block to the south at Chinos Altos, is essentially undrilled for 300 m, with 5 drill holes situated beyond the undrilled 300 m section. The northwest extension of the Veta de Oro vein zone connects with the El Rincón vein zone, the most widely drilled new zone in 2021. Gold mineralized intercepts are common in the newly defined Veta de Oro - El Rincon zone which is partly hosted in the rhyolite sill. See Figure 7.5.

Figure 7.5 Central Zone Vein and Detailed Geologic Map

Source: Sonoro Gold (2023)

7.6.3 Cabeza Blanca, Guadalupe, and El Colorado

The Cabeza Blanca vein zone is a north-south trending vein with a steep easterly dip. The Guadalupe vein zone is a sub-parallel gold bearing vein with a lower dip angle of approximately 55 degrees to 60 degrees to the east. Both veins are about one kilometre long and continue south into El Colorado, confirming El Colorado as a southern extension. See Figure 7.6. Figure 7.7 shows cross-section A to A,' as noted on Figure 7.6.

At El Colorado, the Guadalupe and Cabeza Blanca veins are closest together, in contrast to the wider spacing of the veins in the northern part of the zone.

The El Colorado zone contains normal quartz vein dominant style gold mineralization with sericitic alteration, as well as veins and veinlets of hematitic (formerly sulphide) stringers and bunches in the structures that include a flat higher grade quartz vein first identified in drill hole SRC-044 with 12.19 m grading 11.22 g/t Au and 5.9 g/t Ag. This low angle vein has been named the El Colorado Vein by Sonoro geologists.

Figure 7.6 Cabeza Blanca and El Colorado Vein and Detailed and Geologic Map

Source: Sonoro Gold (2023)

Figure 7.7 El Colorado Cross Section of Au Intercepts (A-A' line in Figure 7-7)

The El Colorado zone is an area of vein intersections, as shown in the Figure 7.7, with common quartz vein stockwork and lower grade yellowish coloured zones. The two main veins are near the top of the ridge, where the east segment represents the Cabeza Blanca vein and the west purple zone near the left side of the cross section shows the Guadalupe vein. High values of gold, with high Pb and Zn and low silver occur in intercepts of the mineralized zones. The epithermal model shown in Figure 8.1 does not account for these generally flat lying bodies of white quartz veins with high gold content which are generally not seen elsewhere in the Project.

The core drill hole that passed through the gold mineralization of the El Colorado flat vein structure, further down hole cuts a flat lying foliated contact into plasticly foliated coarse biotite dioritegranodiorite that is strongly propylitic altered with numerous crossing calcite veinlets. This zone also has dikes of chloritic altered andesitic composition. The combination of mafic intrusive rocks and foliated granodiorite is also observed in the deepest parts of diamond drill holes SCD-1, SCD- 2, and SCD-3 which intersected the Los Japoneses vein at a depth of over 200 m, and in outcrop west of the El Colorado Zone. Sonoro geologists suggest that the foliation zone coincides with collection and partial termination of some listric structures with quartz veins. Additional investigation of the role that the deeper flat structures relation to listric structures and quartz veins is planned by Sonoro geologists.

Source: Sonoro Gold (2023)

7.6.4 La Española Zone

Figure 7.8 shows a sampler in the centre of the image standing at the 8 m wide La Española vein, with the silicified footwall structure to the northwest. The top 100 m of the Cerro Caliche ridge in the distance displays the exposed altered rhyolite flow on the cliff face. Host rocks for La Española vein are both altered rhyolite dikes and quartzite.

The La Española vein structure continues as a lineament northwesterly across the shoulder of Cerro Caliche into the El Bellotoso zone, which was explored with three drill holes in 2021. The northwest continuation is marked with anomalous rock samples and prospect pits displaying vein material. The vein displays variation in width and in the vicinity of the former Española mine, lead and zinc are also present and display variations with more than 1% combined base metal levels.

Figure 7.8 Española Vein and Structural Zone Sampled

Source: Sonoro Gold (2021) *Note: In front of the pickup is the location of Corex drill hole, SCR-49, that was drilled at a -50-degree inclination to cross-cut the vein structure. The hole intersected 6 m grading 0.977 g/t Au. The vein outcrop is approximately 10 m in width.

8.0 DEPOSIT TYPES

8.1 GEOLOGICAL DEPOSIT MODEL

Mineral deposits at the Project and the surrounding area are classified as silver and gold, low to intermediate sulphidation, epithermal systems. These are typical of many local deposits in northeastern Sonora, including the nearby Santa Elena silver/gold mine (First Majestic Silver Corp.), Las Chispas silver/gold mine (Silvercrest Mines) and the Mercedes mine (Equinox Gold Corp.). In the state of Chihuahua to the east, other low sulphidation epithermal deposits include the Dolores silver/gold mine (Pan American Silver) and the Pinos Altos silver/gold mine (Agnico-Eagle Mines Ltd.).

These low sulphidation epithermal deposits form in predominantly brittle and/or porous subaerial felsic volcanic complexes, in extensional and strike-slip structural regimes. Local groundwater dilutes and cools, mixing with upwelling magmatic-derived hydrothermal brines within an extensional setting related to local rifts or detachment faulting related to evolving metamorphic complex formation. Mineralization is typically deposited as multi-zoned veins, stockwork and breccia, due to episodic events. Deposit formation occurs in near-surface environments, typically between 200 m and 600 m, and down to a one-kilometre depth from surface, within temperature gradients of 150°C and 300°C. Indicative textures of mid- to high-level deposits can include open quartz lined fractures, miarolitic cavities, comb structure, drusy/crustiform, or colloform banding, and platy/bladed calcite. Minerals with silver and gold tenure can precipitate as deposits within these conditions, depending on the concentration of the metals in the brines, with sudden changes to local pressure gradients and local pH conditions, as well as fluid flow dynamics.

Alteration intensity of the Cerro Caliche deposits ranges from weak to strong pervasive texture, with the structure being strongest closer to larger veins. Silicification is generally pervasive in proximity to mineralization, followed by sericite-illite-kaolinite assemblages. Sericite alteration is most common in deeper or lower elevation occurrences such as at the surface of El Colorado. Propylitic alteration, with minor pyrite and epidote, forms as broad alteration haloes laterally surrounding the veins at depth in more mafic rocks in deeper parts of El Colorado zone (Figure 8.1).

The Cerro Caliche mineralization styles are considered as the low sulphidation epithermal deposit type, as are the nearby Mercedes (Burtner, 2013) and Cerro Prieto (Giroux, Bain, 2013) gold mines. A working field model adapted from Buchanan (1981) in Figure 8.1 also includes field identifiable vein textures in quartz veins. Textures suggesting boiling include lattice and blading, that developed in partial quartz replacement of carbonate minerals along cleavage planes, an indication of boiling that produces local acidic conditions. Adularia is also tentatively identified by its pink coloured vein material which is also indicative of boiling fluid deposition. Also present are numerous bands of coarse to fine quartz in near rhythmic wall parallel bands that also surround fragments in the vein. The veins of the western side of the Project, located near to and west of the Zorillo veins, are composed of white glassy quartz that do not contain more than geochemically anomalous gold (less than 50 ppb Au) and irregular high levels of lead and zinc.

Figure 8.1 Low Sulfidation Epithermal Model

Figure modified from Buchanan (1981).

8.2 **QP** COMMENTS

The QPs have conducted a number of discussions with Sonoro personnel and note that the exploration programs at the Cerro Caliche Project were planned and executed on the basis of the deposit model discussed above. The QPs have also reviewed the various stages of the drilling programs for the various mineralized areas or zones on the Cerro Caliche Project and note that those programs have always appeared to have been conducted according to the deposit model which has been proposed for the Project.

9.0 EXPLORATION

9.1 HISTORICAL EXPLORATION

In addition to the data collected from the Company's exploration campaigns, Sonoro also acquired data from previous exploration programs completed by prior operators from 1997. Some of the data were acquired at no cost while other data were acquired through a purchase agreement.

Sonoro geologists have extensively reviewed and analyzed the acquired historical data. Total historical data collected on the Project includes 13,009 m of drilling in 119 drill holes and 4,338 surface samples. Discussions with past workers from the programs was also held to confirm that industry wide standards and protocols were followed.

All of the available data carried out by previous owners prior to 2017 have been described in Section 7.2 but a summary of the key fieldwork and sampling is as follows:

- 1997-1998: Cambior, 1,625 rock samples.
- ~2000: Sidney, 176 rock samples.
- 2007-2008: Corex, 1,872 rock samples.
- 2011-2012: Paget, 406 rock samples and 1,250 soil samples.

9.2 SONORO EXPLORATION

Exploration methods employed by Sonoro on the Project consist of surface geological visual assessment, followed by outcrop geochemical sampling. This includes up to two metres continuous chip or channel sampling of outcropping mineralized veins and quartz veined host rocks to determine surface metal concentrations in veins, sheeted dikes and stockwork quartz veining adjacent to larger vein structures.

In 2017, Sonoro began exploration of the Manuel and Amol concession group, located adjacent to southwestern region of the Project. The area was evaluated for outcropping gold mineralization using the soil sampling method of rapid information acquisition, while negotiations were initiated for the adjacent and now current Cerro Caliche property.

The soil sample grid dimension chosen was of 200 m spaced lines running east-west and 50 m sample spacing on the lines. The grid was established from a north-south baseline on UTM grid lines utilizing Garmin handheld GPS instruments. Soils are generally thin in the area and were taken from surface material to eight centimetres depth. Total soil samples collected and processed were 156, with nine continuous rock chip samples of one metre length taken across mineralized structures with quartz vein and silicified metasediments or rhyolite. All samples were delivered to ALS-Chemex sample preparation laboratory in Hermosillo, for processing and shipment to the company's analytical laboratory in Vancouver, B.C. ALS-Chemex processing involved screening soil samples to pass 100 mesh. Rock samples were crushed, followed by grinding of a 200-gram split to pass 100 mesh. The fine prepared sample split was sent to Vancouver for chemical dissolution and passing through instruments, AA to determine gold and ICP to identify the element contents.

Several northwest trending anomalous structures were located cutting the Mesozoic hosting sedimentary rocks. A near horizontal rhyolite sill is also present with an apparent thickness of 20 m to 30 m that is also cut by the structures. The structures were determined to be too restricted to continue exploration and the Manuel and Amol concession group was abandoned.

Within the Cerro Caliche Project, continuous rock chip sampling and channel sampling of rock and vein outcrops were the main means of sampling of surface exposures. Further sampling to depth below the surface consisted of mainly RC drilling and some core drilling. RC chips were bagged at regular drill length intervals of five feet, or 1.52 m. Every three days, samples were collected and transported by ALS or Bureau Veritas (BVI)-Inspectorate from the drill site to the preparation laboratory for processing. Sample processing and analysis ranged from 15 days to 40 days, depending on the laboratory workload.

Sampling is conducted on in situ materials. Sonoro's surface sampling gold results are summarized in Table 9.1.

		Surface S	Sample Types
Company	Year	Number of Rock Samples	Number of Soil Samples
Sonoro	2017	20	140
Sonoro	2018	2,099	
Sonoro	2019	507	
Sonoro	2020	255	
Sonoro	2021	2,125	
Sonoro	2022	415	
Totals		5,401	140

Table 9.1 Sonoro Surface Sample Summary

An outcrop sampling campaign was also conducted on the Project, consisting of rock chip sampling for gold and ICP multi-element analyses A total of 5,401 samples have been collected and analyzed with a summary of gold results presented in Table 9.2. These samples were collected across the Project with, locations plotted in Figure 9.1, coloured by gold grade ranges.

The principal gold mineralization at the Project is evident in surface outcrops, with quartz-veined zones trending along azimuth 330° to 350° showing evidence of gold and silver mineralization with oxidized former sulphides. The prominent northwest-trend of veining is generally consistent throughout the Project, along with stock work type veinlets with diverse orientations.

Table 9.2 Surface Samples May 2021

Sonoro Gold in Surface Samples								
Range of Values Au (g/t)	Number of Samples	Percentage (%)						
More than 3.0	112	2						
More than 1.0 to 3.0	250	5						
More than 0.5 to 1.0	322	6						
More than 0.2 to 0.5	683	13						
More than 0.05 to 0.2	1,477	27						
Less than 0.05	2,557	47						
	5,401	100						

Source: Sonoro Gold (2021)

Figure 9.1 Gold in Surface Samples on the Property

Source: Sonoro Gold (2023)

However, smaller scale veins, exemplified by the Cabeza Blanca vein, show a nearly north-south strike. Most veins dip to the east or northeast, where drilling shows an evolving pattern of a deeper basal shear footwall vein zone with other steeper vein splays which dip more steeply eastward. These listric structures have near-vertical, multiple vein attitudes that join the deeper lower angle structure. Figure 9.2 illustrates the 3D model generated by Sonoro for the mineralized zones, based on assays greater than 0.10 g/t gold.

Lead and zinc are also strongly anomalous in what is considered deeper parts of the structures and vein zones, while silver is anomalous in higher elevation parts of the Project area. These are considered part of the epithermal vein's metal zoning pattern predicted from the model.

Figure 9.2 3D Model – Mineralized Zones – Surface Samples Above a 0.10 Au g/t Threshold

Low level anomalies of arsenic and much lesser antimony are also present in numerous gold-bearing vein areas. Many gold-bearing intervals will often show only traces of silver within gold-bearing zones. The silver and gold have minor coincidences of elevated values in the same sample. Areas of weakly anomalous f manganese are present in some of the larger gold bearing veins.

In 2022, Sonoro conducted an underground channel sampling program at the historical Cabeza Blanca underground adit at the mineralized zone located in the southwestern part of the property (Figure 9.3).

Source: Sonoro Gold (2023)

Source: Sonoro Gold (2023)

An electric rotary hand-held saw and chisel were used to collect 34 channel samples of vein and breccia material from the adit ceiling (back). Saw cuts were approximately four to six centimetres (cm) deep and cut perpendicular to the vein trend with variable length depending on the width of exposed mineralization. Channel material was collected by hand in a catchment tarp below. The bagged samples were labeled, and the site photographed after painting sample numbers on the ceiling.

9.3 SIGNIFICANT RESULTS AND INTERPRETATION

Through its surface exploration program, Sonoro has been able to expand on the prior exploration programs conducted by previous companies. Surface exploration has demonstrated that the Project contains broad continuous zones of mineralization at a 0.1 g/t threshold. Several of these zones have not been fully delineated and additional exploration work will be required to fully define the extents of mineralization along strike and at depth. The central portion of the property has had the most extensive exploration work conducted to date, however, surface and wildcat exploration drilling has successfully identified more structures that warrant additional drilling to further delineate mineralization.

Sonoro has benefited from the acquisition of the previous operators' databases which it has been able to verify and incorporate into its own databases.

9.4 **QP** COMMENTS

Through its surface exploration program, Sonoro has been able to expand on the prior exploration programs by previous companies and has begun to identify the true extent of the mineralization at the Cerro Caliche Project.

Sonoro has benefited from the acquisition of the previous operators' databases, which it has been able to verify and incorporate into its own databases. Some of this data may be able to be used in future resource estimates once it is critically reviewed. Some of the types of information that could be used in future estimates include continuous chip sampling from rock outcrops, either in trenches, along road cuts or in underground workings, if the sample information is surveyed and recorded in a similar method to the logging and sampling of drill holes.

10.0 DRILLING

10.1 Type and Extent

10.1.1 Historical Drilling (Prior to 2018)

A description of the historical drilling is contained in Section 7.0 of this report. In summary, a total of 119 drill holes have been completed on the Project by previous owners, for 13,007.5 m. 101 holes (9,970 m) are RC and 18 holes (3,037.5 m) are core. Previous exploration has identified mineralization of several kilometres and with depths up to 200 m.

Sonoro geologists have reviewed the historical data acquired from previous operators since 1997. Discussions with prior operators confirmed that past programs were conducted to follow industry wide standards and protocols at that time. With the exception of Cambior drilling, previous reports describe at least partial drilling, sampling and analytical procedures and QA/QC results.

In 2018, Sonoro conducted a differential global positioning system (dGPS) survey to accurately locate historical drill collars completed by previous operators, Cambior, Corex Gold and Paget. These collar locations were integrated into Sonoro's drilling database. The review of previous work completed on the Project allowed Sonoro to gain a deeper understanding of the vein zone geology and to develop strategic drilling campaigns to define and expand the Project's mineralization.

10.1.2 Sonoro Drilling (2018 to Present)

Sonoro has performed a combination of reserve circulation (RC) and diamond drill core (core) drilling. As of end of 2022, Sonoro has completed 331 RC and 48 core drill holes, totaling 42,350 m at the Project.

Table 10.1 summarizes the Project's total drilling contained in the Sonoro database, including prior drilling campaigns by previous operators. Figure 10.1 shows the location of holes drilled and claim boundaries.

Company	Voor		Drilling Progra	ams
Company	Tear	Drill Type	Total Drill Holes	Total Drill Metres
Cambior	1997-98	RC	15	2,244.85
Corex	2007	RC	74	6,509.02
Corex	2008	RC	12	1,216.15
Paget	2011	Core	13	2,172.75
Paget	2012	Core	5	864.75
Sonoro	2018	RC	45	4,603.97
Sonoro	2019	RC	51	5,724.19
Sonoro	2020	RC	62	8,029.95
Sonoro	2020	Core	35	4,662.5
Sonoro	2021	RC	108	10,172.22
Sonoro	2021	Core	13	1,352.4

Table 10.1 Drilling Summary

Company Voor			Drilling Programs				
Company Year	fear	Drill Type	Total Drill Holes	Total Drill Metres			
Sonoro	2022	RC	65	7799.95			
Sonoro	2022	Core	0	0			
Totals			498	55,357.70			

Source: Sonoro, 2023

Figure 10.1 Drill Hole Location Map

Source: SRK, 2023 Red traces: Historic Drill Traces Black traces: Sonoro Drill Traces

10.2 PROCEDURES

10.2.1 Historical Drilling

Sonoro has acquired data from three prior exploration companies, for 119 drill holes with a total of 13,007.5 m of drilling, and 4,338 surface samples. Personal discussions between Sonoro and prior operators stated that acceptable mining industry wide standards and protocols at that time were followed, although, limited documentation was supplied.

There appears to be little available documentation describing the Cambior or Paget drilling procedures.

A 2018 report (Hitchborn, 2018) states that Corex drilling was completed using a Foremost buggy rig from Layne de Mexico. All holes were drilled with a 4.5-inch drill bit with face centre return, mostly under dry drilling conditions. Drill runs were 40 feet (ft) and samples were collected at 10 ft intervals. After sample collection, the sample splitter was cleaned by air pressure and the hole was cleaned after each drill run.

10.2.1.1 Collar Surveys

There appears to be no available documentation describing the Cambior or Paget collar surveying procedures.

Corex collars were surveyed with a GPS unit (not identified) by an independent contractor.

Sonoro used Geo Digital Imaging de Mexico SA de CV to resurvey any historical drill collars which were located. All collar locations are surveyed in UTM Datum NAD 27 Zone 12 North.

10.2.1.2 Down Hole Surveys

There appears to be no available documentation describing the Cambior or Paget down hole surveying procedures.

There were no down hole surveys performed for Corex drill holes. As the Corex drill holes average less than 100 m in length, the lack of down hole surveys is not considered material.

10.2.1.3 Logging

There is no documentation describing logging for Cambior, Corex or Paget drilling. Sonoro has relogged available core from Paget drilling.

10.2.1.4 Sampling

For Corex drill program, 4,982 samples (not including QA/QC samples) at 5-foot (1.52 m) lengths were collected. Drill hole cuttings were collected in a Gilson universal sample splitter (approximately 50% split) of the total of sample. If recovery was suspected to be low, 100% of the sample was collected. Sample size was 10 to 12 kilograms (kg) and samples were bagged into cloth drawstring sample bags that were labeled with waterproof tags provided by analytical lab.

10.2.2 Sonoro Drilling

Sonoro has conducted drilling on the Project from 2018 to the present and has aimed to follow recognized procedures considered good practice by the industry, under the supervision of Mel Herdrick, VP Exploration.

The RC drilling was contracted through Layne de Mexico, S.A. de C.V. (Layne), a Granite Company, and included an all-terrain Prospector Buggy truck-mounted drill capable of up to 40° angled drill holes. The

on-board air compressor integrated system delivers 1,050 cfm of free air at 480 pounds per square inch (PSI). Dual tube drill pipe with up to 300 m total length is maintained on site when drilling. A face centred 5.25-inch diameter drill bit is matched to the down hole hammer. All RC drilling on the property was done dry in surface oxidized rock and the water table was not encountered.

Layne used a CT-1500 track mounted long stroke core drill to collect HQ and PQ core samples. 38 HQ holes were completed for resource evaluation.

Ten drill holes (673 m) were completed for metallurgical analysis. These were completed using PQ core (85.0 mm diameter). The core was boxed, logged by Sonoro geologists, and delivered to DHL in Hermosillo. DHL shipped the core via air directly to McClelland Laboratories located in Sparks NV, USA.

10.2.2.1 Collar Surveys

Drilling conducted by Sonoro included collar surveys by Geo Digital Imaging de Mexico SA de CV upon completion of drilling, using EMLID Reach RS2+ Multi-band RTK GNSS receivers connected to a base station. The collars were surveyed in PPK mode post-processing, and then with INEGI's Continuously Operating Reference Stations (CORS) Network. The survey coordinates were downloaded and sent in Excel spreadsheets to Sonoro geologists. All collar locations were surveyed in UTM Datum NAD 27 Zona 12 North and elevations were reported as metres above mean sea level.

10.2.2.2 Downhole Survey

Drilling conducted by Sonoro had the drilling contractor (Layne) perform down hole surveys with survey results provided daily. Both RC holes and core holes were surveyed every 50 m down hole, using a Reflex EZ Track 1.5 instrument. The azimuth is corrected for magnetic declination by adding 9.2° to the azimuth. SRK has recommended reviewing this factor annually and adjusting as required.

10.2.2.3 Logging

Sonoro RC holes are logged by Sonoro geologists at the drill site on paper and later entered into Excel sheets. The original sheets are scanned and archived by Sonoro.

For core holes, geotechnical data (recovery, RQD, weathering, hardness, breakage, number of joints) are measured prior to geological logging. Geological data, including lithology, alteration, structural and mineralization are logged in Excel spreadsheets by Sonoro geologists. Lithologic and structural features are noted on the core to aid in determining the sample length. The samples are then marked on the core, which is then cut, bagged with the sample tags and collected for shipping to the assay laboratory.

10.2.2.4 Sampling

Drill samples were collected as RC chips that were passed by closed tubing through a cyclone to collect fine airborne particles, then into a three-tiered Jones splitter where the final sample was a quartered sample of the total original material from the drill interval. A Sonoro geologist supervised the RC drilling and RC sample collection. Samples were bagged for each regular drill length intervals of 5 ft or 1.52 m and collected and transported by ALS or BV personnel from the drill site every three days during drilling activities. The laboratory trucks hauled the RC samples to the respective preparation laboratory for the

process of sample preparation to begin. Sample processing and analysis ranged from 15 days to 40 days, depending on the laboratory workload.

HQ core samples were boxed in fabricated plastic core boxes with thin wood or cardboard markers denoting the depth in metres at the end of each drill run. Standard run length was 3.05 m (10 ft). All the cores were transported by Sonoro geologists to the core logging and cutting facility in Cucurpe, where geologists were responsible for inspecting, making descriptive logs, and recording rock quality designations (RQD) by measuring and recording percentages of intact core lengths. Each core box was digitally photographed. Following the data collection, the core was cut in half along the core axis with a diamond saw, with half bagged for assay analysis and the other half retained. ALS or BV staff collected the samples and delivered them to the respective sample preparation facility. The remaining core and reject material from the assay laboratory is stored in a secure facility in Cucurpe.

Quality control samples consisting of blanks, certified reference material (CRM), and field duplicates were inserted by geologist at the core logging facility. Details on the QA/QC program are described in detail in Chapter 12.0.

10.3 RECOVERY

There is no documentation related to drilling sample recovery for Cambior or Paget historical drilling programs.

Hitchborn stated that the RC was drilled under dry conditions and, although the samples were about 50% of the theoretical total weight, Corex considered the sample to adequately represent the drilled material. Corex expressed no concern regarding the sample quality related to the assay results.

Sonoro RC has also been drilled dry and Sonoro geologists estimate a high recovery percentage, although SRK has been unable to independently verify the approximate recovery.

SRK reviewed mineralized core intervals and did not observe a loss of core in the mineralized intervals. A mineralized interval is shown in Figure 10.2, and no significant loss of mineralized material is noted. As part of the Sonoro logging procedure for core holes, both core recovery and RQD are recorded. Average recovery based on the 49 Sonoro core holes was approximately 90%. Sonoro estimates that the RC recovery is a similar percentage.

Based on the statements of historic operators and Sonoro staff, SRK does not consider that the sample recovery impacts the quality of the assays.

SRK recommends twinning some RC holes with core holes to better assess the impact of sample recovery on grade or to compare RC to core drilling in better drilled areas.

Figure 10.2 Mineralized Interval (SCD-033: 72.3 to 74.4 m)

Source: SRK, 2023.

10.4 SAMPLE LENGTH/TRUE THICKNESS

Most drill holes are inclined to 45° to the southwest to provide approximate perpendicular intercepts to vein trends at the Project. The true inclination of the mineralized zones is not precisely known and the common use of 45° inclined drill holes with an azimuth of 225 is considered an appropriate orientation to minimize intercept corrections. However, it is possible that some reported drill hole intercepts may have reductions of interval length by 10% to 15% to obtain true thickness of intervals. Drill holes with azimuths of 050 to 080 were drilled to utilize roads to test areas without current access. These drill holes were considered to cut near vertical zones of mineralization. All drilling completed is considered to have good quality samples from the drilling programs that, with the large quantity of drill holes, reliably represent the mineralized size and mineralization values of the intersected material. Representative sections are shown in Figure 10.3 though Figure 10.6.

Figure 10.3 Mineralized Domains (Grade Shells) and Drilling - Plan View

Source: SRK, (2023).

Figure 10.4 Mineralized Domains (Grade Shells) Central Domain and Drilling – Section A-A

Source: SRK, 2023

Figure 10.5 Mineralized Domains (Grade Shells) Central and West Upper and Drilling - Section B-B

Source: SRK, 2023.

Figure 10.6 Mineralized Domains (Grade Shells) West Upper and Drilling - Section C-C

73

Source: SRK, 2023

10.5 SUMMARY OF DRILL INTERCEPTS

RC and core drilling are regarded as reasonable methods for this deposit and these techniques have been applied by all operators since early exploration and mining. Drilling has been completed from surface with drill holes designed to provide reasonable intersections to the interpreted dip and strike of the mineralization.

It is the QPs' opinion that Sonoro's drilling and sampling procedures currently meet accepted industry practices. Overall, it is the QP's opinion that the drilling conducted on the property has produced a reliable geological and geochemical database, suitable for use in estimating mineral resources.

The results of the drilling have enabled SRK to review and confirm the geological and structural trend models generated by Sonoro. The drilling intersections are considered to provide a suitable basis from which to generate the grade shells used to constrain the grade estimation, as shown in Figure 10.3 to Figure 10.6.

Table 10.2 summarizes the drill hole locations and orientations are and Table 10.3 summarizes the significant mineralization intercepts.

U.J. J.J.	Easting	Northing	Elevation	Depth	Azimuth	Dip
Hole Id	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
141-97-01	537012.50	3364468.38	1380.88	173.74	245	-45
141-97-02	537225.01	3364704.00	1369.84	201.17	245	-45
141-97-03	537002.40	3364626.91	1365.42	152.40	245	-45
141-97-04	537056.68	3364671.73	1338.29	152.40	245	-45
141-97-05	537028.00	3364792.00	1296.80	149.35	245	-45
141-97-06	536937.00	3365008.00	1316.11	62.48	245	-45
141-97-07	536180.00	3364481.00	1239.50	121.92	245	-45
141-97-08	536145.43	3365034.44	1337.42	149.35	245	-45
141-97-09	536829.76	3365223.40	1372.50	152.40	245	-45
141-97-10	537008.13	3365268.32	1370.08	149.35	245	-45
141-97-11	537104.87	3365362.58	1365.84	131.06	245	-45
141-97-12	537218.59	3365461.57	1375.53	128.02	245	-45
141-97-13	537298.43	3365443.34	1377.20	164.59	245	-45
141-97-14	536900.41	3364973.80	1332.04	213.36	245	-45
141-97-15	536783.55	3365426.51	1301.73	143.26	245	-45
CC-001	536201.79	3368358.62	1200.00	239.00	47	-60
CC-002	536084.79	3368478.62	1200.00	179.65	47	-60
CC-003	536084.79	3368478.62	1200.00	224.75	45	-70
CC-004	536418.79	3368160.62	1200.00	140.35	33	-60
CC-005	536273.79	3368564.62	1200.00	125.30	228.8	-63
CC-006	536976.59	3367817.40	1433.28	241.65	277	-60
CC-007	537007.79	3367561.62	1439.10	101.50	270	-60
CC-008	537007.79	3367561.62	1439.10	127.15	270	-70
CC-009	537056.79	3365935.62	1464.08	234.50	242	-60

Table 10.2 Drillhole Location and Orientation

	Easting	Northing	Elevation	Depth	Azimuth	Dip
Ποιετα	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
CC-010	537056.79	3365935.62	1464.08	173.40	44	-55
CC-011	536246.79	3366706.62	1419.59	148.35	244	-60
CC-012	536281.79	3366438.62	1433.14	237.00	238	-55
CC-013	536895.79	3365218.62	1364.96	124.45	240	-55
CC-014	536265.79	3368323.62	1200.00	153.00	294	-62
CC-015	536738.79	3367803.62	1410.17	169.95	205	-55
CC-016	536860.79	3367725.62	1450.33	245.80	270	-60
CC-017	537804.79	3365527.62	1510.14	116.20	270	-60
CC-018	537804.79	3365527.62	1510.14	56.95	280	-75
CC-019	536530.79	3366198.62	1428.34	233.80	14	-60
CC-020	537070.79	3365317.62	1367.07	188.85	214	-60
CC-021	536648.79	3365299.62	1326.81	202.30	282	-55
CC-022	536712.00	3365403.00	1300.00	186.20	63	-55
CC-023	536779.79	3365427.62	1301.11	161.70	240	-55
CC-024	536717.79	3365592.62	1290.23	109.05	230	-55
CC-025	536324.79	3366632.62	1418.39	222.65	240	-50
CC-026	536572.79	3365094.62	1354.40	194.50	66	-55
CC-027	536351.79	3366681.62	1411.98	204.10	37	-55
CC-029	536850.79	3365142.62	1358.16	118.40	40	-50
CC-030	536084.79	3365289.62	1335.83	125.10	256	-60
CCR-01	536867.59	3365183.39	1360.23	163.07	235	-45
CCR-02	537304.00	3365389.26	1369.00	182.88	235	-45
CCR-03	537124.17	3365334.85	1362.51	102.11	235	-45
CCR-04	536884.75	3365043.32	1340.53	144.78	235	-45
CCR-05	536930.05	3364931.68	1324.44	111.25	235	-45
CCR-06	536824.68	3365257.14	1377.57	172.21	235	-50
CCR-07	536793.63	3365118.58	1363.63	144.78	235	-45
CCR-08	536987.94	3364881.88	1288.99	86.87	235	-45
CCR-09	537070.53	3364662.76	1334.84	184.40	235	-45
CCR-10	536957.29	3365114.40	1342.47	144.78	235	-45
CCR-11	536946.48	3365041.26	1327.25	150.88	235	-50
CCR-12	537168.31	3364627.98	1360.92	144.78	235	-45
CCR-13	537204.64	3364568.00	1361.42	138.68	235	-45
CCR-14	537106.40	3364780.90	1315.28	205.74	235	-45
CCR-15	537060.72	3364840.50	1309.71	175.26	235	-45
CCR-16	536827.56	3365358.09	1348.55	181.36	235	-45
CCR-17	536829.62	3365132.85	1360.35	108.20	55	-45
CCR-18	536858.72	3365152.77	1358.59	105.16	55	-45
CCR-19	537011.90	3365274.95	13/1.42	53.34	55	-45
CCR-20	536079.64	3365027.25	1303.99	41.24	235	-50
CCR-21	536111.41	3364959.41	1327.43	53.34	235	-45
CCR 22	537240.60	3303420.19	1361.52	05.53 CE E2	250	-45 4E
CCR-23	531260.15	3303350.01	1309.03	5.53	235	-45 45
	531183.40	3304531.00	1307.90	59.44	235	-45
CCR-20	537030.51 537020 27	33041U3.15 2261712 00	1217 04	117 25	233 225	-30
CCR-20	527104 01	2261701 AF	121/ 00	114 20	233 235	-43 65
ULK-21	53/104.01	3304/81.45	1314.89	114.30	235	-05

	Easting	Northing	Elevation	Depth	Azimuth	Dip
Ποιε Ιά	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
CCR-28	537176.24	3365032.04	1316.36	50.29	235	-45
CCR-29	537215.00	3365450.99	1373.63	50.29	235	-50
CCR-30	537255.09	3365317.65	1364.33	59.44	235	-50
CCR-31	537327.33	3365374.03	1371.13	59.44	235	-50
CCR-32	536769.06	3365170.93	1362.42	71.63	55	-45
CCR-33	537127.48	3364764.84	1316.89	99.06	235	-45
CCR-34	537089.73	3364807.71	1313.58	99.06	235	-50
CCR-35	537065.52	3365657.19	1362.02	41.15	235	-45
CCR-36	537182.75	3365095.90	1314.44	53.34	235	-50
CCR-37	537536.53	3364804.85	1372.98	50.29	235	-50
CCR-38	537502.43	3364742.73	1356.89	62.48	195	-50
CCR-39	537482.43	3364765.24	1359.00	65.53	195	-45
CCR-40	536754.39	3365188.17	1363.42	86.87	50	-45
CCR-41	538265.05	3365291.31	1331.89	56.39	235	-45
CCR-42	538317.31	3365230.46	1316.75	44.20	235	-50
CCR-43	537222.57	3364514.10	1346.84	62.48	235	-45
CCR-44	537358.06	3364932.90	1397.45	53.34	235	-50
CCR-45	537263.36	3365446.98	1371.50	94.49	235	-50
CCR-46	537232.17	3365333.59	1354.21	42.67	235	-45
CCR-47	536455.60	3365142.04	1353.61	76.20	235	-45
CCR-48	536471.84	3365104.67	1343.10	103.63	235	-50
CCR-49	538079.13	3364890.84	1292.89	51.82	235	-50
CCR-50	538162.79	3364629.87	1275.52	67.06	240	-50
CCR-51	538111.58	3364756.40	1293.16	82.30	235	-50
CCR-52	537258.31	3365251.90	1340.91	54.86	235	-50
CCR-53	537037.31	3365687.13	1374.08	48.77	245	-55
CCR-54	537200.27	3365467.57	1379.25	45.72	235	-45
CCR-55	536079.76	3365051.48	1370.30	67.06	235	-50
CCR-56	537058.38	3364751.65	1308.57	77.72	235	-45
CCR-57	537165.02	3364728.67	1339.11	85.34	235	-50
CCR-58	536063.35	3365167.06	1392.67	48.77	235	-50
CCR-59	536053.57	3364759.96	1288.83	67.06	235	-50
CCR-60	536915.54	3365023.43	1329.50	73.15	235	-50
CCR-61	537333.82	3365414.41	1377.88	91.44	235	-50
CCR-62	536901.70	3364915.96	1342.57	67.06	235	-50
CCR-63	537122.43	3364802.76	1326.70	115.82	235	-65
CCR-64	537342.88	3365342.91	1357.22	85.34	235	-50
CCR-65	537052.45	3364716.00	1326.28	91.44	235	-50
CCR-66	536090.93	3365038.64	1361.99	60.96	235	-50
CCR-67	535739.24	3364278.57	1237.54	42.67	245	-55
CCR-68	535802.12	3364188.84	1235.09	51.82	245	-50
CCR-69	535641.31	3364646.36	1223.39	42.67	245	-50
CCR-70	536077.53	3365101.14	1386.64	28.96	235	-45
CCR-71	537031.03	3364792.51	1296.02	51.82	235	-50
CCR-72	536926.69	3364973.43	1319.72	73.15	235	-45
CCR-73	537090.12	3364712.58	1315.61	76.20	235	-45
CCR-74	536861.60	3365126.18	1355.19	134.11	55	-45
CCR-75	537296.53	3365346.31	1368.45	108.20	235	-45

	Easting	Northing	Elevation	Depth	Azimuth	Dip
Ποιετα	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
CCR-76	537170.45	3364736.77	1339.47	121.92	235	-65
CCR-77	537174.98	3364772.94	1342.50	152.40	235	-55
CCR-78	537104.24	3364722.21	1316.22	85.34	235	-55
CCR-79	537278.96	3365392.80	1360.53	67.06	235	-45
CCR-80	537345.70	3365387.08	1369.24	76.20	235	-50
CCR-81	536930.62	3365096.13	1343.44	97.54	235	-45
CCR-82	537354.73	3365424.20	1375.04	102.11	235	-50
CCR-83	536940.48	3364948.80	1317.07	92.96	235	-50
CCR-84	537203.54	3365105.18	1318.48	99.06	235	-65
CCR-85	537277.44	3365227.19	1327.15	59.44	235	-45
CCR-86	537150.23	3364823.61	1346.12	153.92	235	-65
SCD-001	537191.39	3365139.31	1318.05	372.75	234	-45
SCD-002	537029.25	3365417.84	1352.68	401.20	236	-45
SCD-003	536830.39	3365510.18	1280.75	383.10	238	-45
SCD-004	536900.05	3364980.08	1332.49	50.40	237	-45
SCD-005	537260.65	3365413.61	1361.51	105.50	237	-45
SCD-006	537061.25	3364694.95	1329.24	52.00	237	-50
SCD-007	537064.12	3364693.84	1329.28	63.15	0	-90
SCD-008	536117.43	3364513.93	1298.97	140.00	157	-67
SCD-009	536075.43	3365024.20	1362.95	25.00	275	-45
SCD-010	536064.64	3365066.54	1381.21	24.15	234	-43
SCD-011	537107.76	3365825.86	1451.90	221.20	235	-50
SCD-012	536877.93	3365174.14	1358.01	62.50	54	-45
SCD-013	536806.89	3365187.44	1371.57	50.00	50	-45
SCD-014	536861.88	3365126.63	1354.92	100.00	55	-45
SCD-015	536987.32	3365978.27	1451.66	260.40	219	-45
SCD-016	536188.10	3364645.33	1307.57	221.50	199	-45
SCD-017	538249.54	3365537.23	1412.93	224.20	234	-45
SCD-018	536242.05	3366695.26	1419.75	110.20	245	-45
SCD-019	536268.98	3366662.93	1417.26	101.10	235	-45
SCD-020	536302.39	3366546.19	1421.66	106.80	55	-45
SCD-021	536341.55	3366455.09	1427.72	158.10	55	-45
SCD-022	536404.69	3365253.31	1332.28	60.25	222	-45
SCD-023	536150.74	3364463.95	1256.29	101.85	226	-74
SCD-024	536162.42	3364522.53	1267.15	116.60	158	-84
SCD-025	536199.42	3364515.17	1242.44	100.15	194	-62
SCD-026	536173.10	3364465.82	1239.88	89.85	225	-73
SCD-027	536172.54	3364447.85	1238.89	103.10	188	-60
SCD-028	536141.90	3364582.91	1302.35	143.40	218	-77
SCD-029	535980.99	3365198.35	1348.96	90.50	260	-45
SCD-030	536098.81	3365252.67	1352.10	90.20	240	-45
SCD-031	536108.44	3365303.69	1327.94	109.95	295	-45
SCD-032	537094.21	3365741.40	1415.85	149.10	235	-60
SCD-033	536982.14	3365838.07	1412.62	85.30	235	-65
SCD-034	537027.20	3365753.46	1412.71	87.90	235	-55
SCD-035	536898.52	3365897.05	1406.99	101.10	241	-70
SCD-036	536530.45	3366203.67	1427.52	100.60	57	-45
SCD-037	536744.86	3366212.76	1412.84	104.50	57	-45

	Easting	Northing	Elevation	Depth	Azimuth	Dip
Ποιε Ια	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
SCD-038	536730.44	3366111.31	1429.57	100.20	237	-45
SCD-039	536959.14	3366022.00	1433.01	119.00	55	-45
SCD-040	536431.86	3366401.08	1402.82	130.20	56	-45
SCD-041	536538.22	3366351.11	1395.72	104.00	55	-45
SCD-042	536635.05	3366289.78	1382.20	100.10	56	-45
SCD-043	536811.10	3366156.32	1408.10	98.20	54	-45
SCD-044	536880.22	3366094.59	1416.53	101.00	56	-45
SCD-045	536531.44	3366184.65	1428.38	76.60	206	-45
SCD-046	536256.41	3366992.62	1404.90	122.20	58	-45
SCD-047	536664.97	3367009.17	1390.42	80.40	56	-45
SCD-048	536446.30	3366749.18	1411.55	115.40	57	-45
SCR-001	536836.88	3365000.17	1364.02	111.25	233	-45
SCR-002	536887.16	3364941.75	1346.53	70.10	235	-45
SCR-003	536911.81	3364958.11	1329.78	80.77	237	-45
SCR-004	536901.24	3364983.18	1332.69	70.10	235	-45
SCR-005	536896.07	3365019.48	1335.91	100.58	233	-45
SCR-006	536907.18	3365135.13	1346.97	120.40	315	-45
SCR-007	536806.21	3365189.03	1371.92	219.46	54	-45
SCR-008	536877.59	3365178.00	1358.46	123.44	55	-45
SCR-008B	536866.87	3365169.57	1360.49	30.48	55	-45
SCR-009	536909.98	3365134.88	1346.76	120.40	55	-45
SCR-010	536946.60	3364913.94	1316.85	94.49	235	-45
SCR-011	536940.66	3365008.61	1315.54	91.44	235	-45
SCR-012	536954.12	3364987.98	1313.18	91.44	235	-45
SCR-013	536972.95	3364896.97	1301.04	91.44	235	-45
SCR-014	537058.21	3364789.53	1298.27	42.67	235	-45
SCR-015	537052.58	3364817.73	1302.68	79.25	235	-45
SCR-016	536970.70	3364725.51	1339.77	60.96	235	-45
SCR-017	537252.72	3365471.38	1379.39	146.30	235	-45
SCR-018	537229.63	3365489.06	1384.82	115.82	235	-64
SCR-019	537207.69	3365406.20	1368.14	64.01	235	-45
SCR-020	536977.82	3364769.95	1312.99	70.10	235	-45
SCR-021	537060.47	3364696.07	1329.40	152.40	235	-50
SCR-022	537261.10	3365415.05	1361.37	115.82	234	-45
SCR-023	536088.01	3365147.16	1394.82	70.10	258	-45
SCR-024	536110.60	3365100.70	1372.01	79.25	259	-45
SCR-025	536104.41	3365045.22	1356.01	67.06	260	-45
SCR-026	536167.17	3365042.55	1332.57	170.69	260	-45
SCR-027	536177.44	3365193.82	1389.79	167.64	259	-45
SCR-028	536100.49	3365174.47	1394.38	97.54	285	-45
SCR-029	537234.89	3365369.74	1347.36	76.20	236	-45
SCR-030	536016.82	3364953.96	1358.41	109.73	260	-45
SCR-031	536136.53	3364954.14	1317.23	100.58	260	-45
SCR-032	536113.71	3364924.27	1322.07	60.96	260	-45
SCR-033	536113.08	3364874.16	1319.04	39.62	260	-45
SCR-034	536122.45	3364976.62	1328.55	88.39	260	-45
SCR-035	536182.56	3364886.25	1313.79	100.58	258	-45
SCR-036	536041.82	3364512.68	1286.85	158.50	262	-45

	Easting	Northing	Elevation	Depth	Azimuth	Dip
Hole Id	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
SCR-037	536114.44	3364515.35	1299.00	222.50	260	-48
SCR-038	536414.15	3364804.88	1355.62	146.30	228	-45
SCR-039	536216.44	3364709.45	1328.54	185.93	246	-45
SCR-040	536120.89	3365026.37	1343.62	88.39	260	-45
SCR-041	536100.85	3364997.84	1343.05	57.91	260	-45
SCR-042	536173.16	3364804.15	1307.34	70.10	264	-45
SCR-043	536599.80	3364241.92	1358.13	70.10	260	-45
SCR-044	536175.56	3364477.69	1239.43	112.78	263	-45
SCR-045	536176.63	3364479.01	1239.30	121.92	265	-70
SCR-046	536159.82	3364522.51	1267.04	131.06	235	-45
SCR-047	536175.00	3366597.00	1387.00	152.40	238	-45
SCR-048	536132.37	3366411.57	1418.81	100.58	57	-45
SCR-049	536003.84	3366423.25	1375.34	88.39	55	-45
SCR-050	535914.89	3366330.23	1371.76	128.02	237	-55
SCR-051	535947.98	3366275.65	1368.96	121.92	230	-55
SCR-052	535966.10	3366200.63	1360.43	121.92	235	-55
SCR-053	535992.99	3366135.24	1329.35	109.73	263	-60
SCR-054	536693.01	3365612.29	1300.42	109.73	239	-45
SCR-055	536672.45	3365328.03	1330.67	152.40	240	-45
SCR-056	537063.72	3365727.98	1408.91	91.44	235	-55
SCR-057	537008.25	3365789.15	1411.62	91.44	235	-62
SCR-058	536935.87	3365865.74	1404.17	128.02	222	-62
SCR-059	537070.02	3365379.12	1363.27	114.30	235	-45
SCR-060	535948.47	3365137.24	1396.03	103.63	251	-45
SCR-061	536043.49	3364829.92	1332.94	103.63	265	-45
SCR-062	536430.70	3365170.66	1369.38	100.58	237	-45
SCR-063	536520.46	3365080.73	1349.13	121.92	232	-45
SCR-064	536812.66	3365353.34	1347.02	155.45	55	-45
SCR-065	536830.59	3365268.31	1378.63	149.35	55	-45
SCR-066	537132.46	3365160.26	1329.68	73.15	233	-45
SCR-067	537594.90	3364976.49	1413.77	106.68	235	-45
SCR-068	538145.14	3364689.55	1269.94	140.21	222	-45
SCR-069	537621.26	3364865.70	1390.16	100.58	231	-45
SCR-070	537475.60	3364839.11	1377.60	109.73	238	-45
SCR-071	537382.76	3364855.19	1379.48	76.20	236	-45
SCR-072	536943.76	3365046.49	1328.27	176.78	50	-45
SCR-073	536961.34	3365114.43	1342.78	109.73	50	-45
SCR-074	536841.69	3365098.46	1355.90	164.59	53	-45
SCR-075	536836.36	3365093.17	1356.13	128.08	238	-45
SCR-076	536864.69	3365226.44	1368.82	140.21	53	-45
SCR-077	536922.15	3365269.29	1372.66	100.58	54	-45
SCR-078	537022.70	3365342.10	1378.30	91.44	231	-45
SCR-079	537117.14	3365273.26	1348.33	100.58	235	-45
SCR-080	537122.76	3365210.18	1343.33	76.20	230	-45
SCR-081	536766.54	3365155.12	1363.08	124.97	233	-45
SCR-082	536709.08	3365212.13	1346.55	126.49	235	-45
SCR-083	536694.70	3365258.26	1338.61	137.16	235	-45
SCR-084	536774.04	3365321.11	1349.96	103.63	235	-45

	Easting	Northing	Elevation	Depth	Azimuth	Dip
Ποιε Ιά	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
SCR-085	536806.63	3365389.15	1322.58	91.44	238	-45
SCR-086	537040.43	3364871.63	1285.31	82.30	238	-45
SCR-087	536958.04	3364989.33	1313.16	88.39	60	-45
SCR-088	537011.86	3365076.42	1322.02	73.15	59	-45
SCR-089	537002.70	3365270.92	1370.57	103.63	241	-45
SCR-090	537057.79	3365237.26	1357.83	79.25	235	-45
SCR-091	536894.03	3365298.63	1378.15	73.15	53	-45
SCR-092	536647.39	3365348.59	1328.09	128.02	55	-45
SCR-093	536630.82	3365388.24	1302.03	121.92	45	-45
SCR-094	536630.23	3365388.81	1302.04	106.68	242	-45
SCR-095	536740.05	3365484.25	1268.53	91.44	237	-45
SCR-096	536554.99	3365086.01	1354.64	163.07	226	-45
SCR-097	536543.72	3365053.59	1359.89	126.49	238	-45
SCR-098	536432.39	3365201.06	1379.15	134.11	236	-45
SCR-099	536838.65	3365320.26	1368.33	152.40	57	-45
SCR-100	537001.78	3365508.75	1308.19	100.58	239	-45
SCR-101	536967.04	3365599.35	1323.58	106.68	236	-45
SCR-102	536793.55	3365644.38	1307.77	301.75	235	-45
SCR-103	536697.29	3365695.14	1276.66	313.94	236	-45
SCR-104	536721.40	3365325.30	1337.60	201.17	235	-45
SCR-105	536839.05	3365318.48	1368.43	301.75	237	-60
SCR-106	536737.73	3365411.34	1301.47	252.98	232	-45
SCR-107	536811.33	3365454.82	1291.73	170.69	237	-50
SCR-108	536857.36	3365426.33	1313.67	170.69	231	-45
SCR-109	536409.99	3365255.81	1333.00	184.40	229	-45
SCR-110	536648.24	3365347.42	1328.16	140.21	247	-45
SCR-111	536734.02	3365524.24	1274.13	91.44	233	-45
SCR-112	536607.07	3365409.18	1282.10	128.02	245	-45
SCR-113	536657.16	3365440.97	1279.32	91.44	237	-45
SCR-114	536678.50	3365288.40	1331.91	131.06	232	-45
SCR-115	536663.26	3365229.66	1329.88	82.30	236	-45
SCR-116	536659.55	3365176.52	1326.83	67.06	234	-45
SCR-117	536693.57	3365155.81	1333.97	82.30	232	-45
SCR-118	536714.76	3365120.66	1347.56	82.30	233	-45
SCR-119	537215.98	3364488.47	1344.16	100.58	203	-45
SCR-120	537246.14	3364451.38	1321.26	82.30	220	-45
SCR-121	537195.88	3364599.81	1363.21	82.30	238	-45
SCR-122	537222.13	3364556.05	1350.93	82.30	238	-45
SCR-123	537183.39	3364671.98	1350.05	82.30	229	-45
SCR-124	536544.23	3365013.88	1366.81	100.58	234	-45
SCR-125	536574.89	3364992.19	1364.05	146.30	231	-45
SCR-126	536465.75	3365172.91	1364.01	91.44	234	-45
SCR-127	536494.22	3365143.77	1348.08	91.44	234	-45
SCR-128	536503.65	3365107.62	1337.83	82.30	231	-45
SCR-129	538672.28	3364935.35	1411.99	121.92	266	-45
SCR-130	538675.92	3364936.05	1411.78	131.06	85	-45
SCR-131	538659.66	3364982.11	1418.93	100.58	264	-60
SCR-132	538763.42	3365009.10	1438.85	201.17	261	-45

	Easting	Northing	Elevation	Depth	Azimuth	Dip
ποιε ια	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
SCR-133	536793.77	3365239.93	1376.08	91.44	235	-45
SCR-134	536747.02	3365185.72	1361.31	100.58	231	-45
SCR-135	536772.18	3365074.77	1371.10	121.92	234	-45
SCR-136	536749.11	3365061.64	1374.87	88.39	235	-45
SCR-137	536750.13	3365099.89	1362.98	100.58	233	-45
SCR-138	536780.32	3365039.82	1375.91	82.30	231	-45
SCR-139	536812.01	3365062.75	1363.17	115.82	234	-45
SCR-140	536748.90	3365249.16	1358.81	161.54	234	-48
SCR-141	536574.89	3365023.11	1362.96	170.69	232	-45
SCR-142	536542.84	3364986.78	1366.12	131.06	228	-45
SCR-143	536542.87	3364951.08	1348.34	121.92	230	-45
SCR-144	536788.57	3365285.63	1364.95	97.54	232	-50
SCR-145	536732.76	3365290.03	1348.63	170.69	232	-48
SCR-146	536714.34	3365347.33	1329.41	140.21	243	-45
SCR-147	536757.12	3365376.73	1326.62	140.21	232	-45
SCR-148	536421.69	3365280.90	1317.97	121.92	250	-45
SCR-149	536394.26	3365325.48	1281.80	134.11	246	-45
SCR-150	536808.44	3365018.64	1370.84	82.30	233	-45
SCR-151	536842.75	3365034.21	1356.57	106.68	234	-45
SCR-152	536858.82	3365067.51	1347.69	131.06	234	-45
SCR-153	536583.90	3365438.15	1257.63	97.54	234	-45
SCR-154	536642.79	3365468.89	1260.26	94.49	233	-45
SCR-155	536884.12	3365100.50	1345.93	121.92	235	-45
SCR-156	537197.33	3365549.23	1395.02	100.58	237	-50
SCR-157	537180.79	3365631.99	1410.51	131.06	233	-45
SCR-158	536510.85	3364860.58	1360.81	100.58	233	-45
SCR-159	536580.59	3364880.89	1327.41	100.58	237	-45
SCR-160	536587.26	3364802.05	1310.73	100.58	237	-45
SCR-161	536648.48	3364841.49	1320.71	106.68	237	-45
SCR-162	536661.28	3364765.62	1327.36	115.82	233	-45
SCR-163	536730.29	3364877.47	1351.45	112.78	234	-45
SCR-164	536564.61	3364725.13	1293.42	109.73	238	-45
SCR-165	536514.78	3364677.26	1277.38	100.58	232	-45
SCR-166	536799.92	3364780.85	1281.87	100.58	238	-45
SCR-167	536716.77	3364695.29	1286.57	121.92	236	-45
SCR-168	536661.49	3364681.93	1285.23	121.92	237	-45
SCR-169	535962.79	3366034.39	1309.15	103.63	57	-45
SCR-170	536096.03	3365931.28	1319.04	100.58	237	-45
SCR-171	536162.11	3365794.34	1305.79	137.16	233	-45
SCR-172	536426.10	3365615.60	1286.06	100.58	237	-45
SCR-173	536278.98	3365694.01	1292.43	100.58	238	-45
SCR-174	536207.79	3366651.45	1420.29	109.73	62	-50
SCR-175	536159.71	3366706.38	1386.48	112.78	52	-45
SCR-176	536398.14	3365550.88	1285.25	100.58	234	-45
SCR-177	536307.46	3365580.27	1280.46	106.68	261	-45
SCR-178	536466.11	3365557.17	1278.38	100.58	247	-45
SCR-179	536348.55	3365650.33	1287.59	70.10	234	-45
SCR-180	536239.12	3365614.87	1281.55	100.58	268	-45

	Easting	Northing	Elevation	Depth	Azimuth	Dip
ποιε ια	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
SCR-181	535905.02	3365663.57	1231.29	100.58	52	-45
SCR-182	536652.85	3366543.79	1362.43	100.58	36	-45
SCR-183	536711.92	3366516.06	1355.94	100.58	58	-45
SCR-184	536469.63	3365280.27	1328.64	140.21	250	-45
SCR-185	536426.73	3364970.43	1379.47	100.58	235	-45
SCR-186	536466.97	3365293.49	1319.17	129.54	266	-45
SCR-187	536430.67	3364973.01	1379.26	103.63	50	-45
SCR-188	536760.77	3365010.45	1380.09	60.96	229	-45
SCR-189	536838.19	3365132.94	1359.06	100.58	231	-45
SCR-190	536789.54	3364991.23	1378.23	60.96	237	-45
SCR-191	536437.83	3365344.28	1277.75	91.44	232	-45
SCR-192	536873.81	3364996.03	1347.81	82.30	233	-45
SCR-193	536401.03	3365354.73	1265.16	51.82	240	-52
SCR-194	536474.26	3365214.53	1374.42	100.58	236	-45
SCR-195	536393.00	3365380.41	1249.78	60.96	251	-45
SCR-196	536631.35	3365257.79	1324.45	73.15	240	-45
SCR-197	536618.02	3365205.58	1324.18	48.77	241	-45
SCR-198	536598.60	3365232.87	1328.05	42.67	238	-45
SCR-199	536647.41	3365140.12	1329.84	41.15	241	-45
SCR-200	536661.02	3365105.42	1336.07	42.67	234	-45
SCR-201	536491.35	3365201.19	1365.82	121.92	232	-45
SCR-202	536692.50	3365081.36	1350.22	64.01	233	-45
SCR-203	536516.85	3365183.58	1352.34	131.06	233	-45
SCR-204	536719.48	3365061.47	1365.85	71.63	235	-45
SCR-205	536528.05	3365147.79	1339.00	121.92	232	-45
SCR-206	536740.92	3365031.17	1377.22	73.15	239	-45
SCR-207	536465.17	3365256.96	1345.05	121.92	234	-45
SCR-208	536814.14	3364958.18	1372.84	51.82	235	-45
SCR-209	536591.54	3364931.66	1336.12	100.58	234	-45
SCR-210	536848.78	3364979.25	1360.60	76.20	238	-45
SCR-211	536626.41	3364869.27	1310.86	131.06	236	-45
SCR-212	536859.94	3364944.40	1358.40	54.86	238	-45
SCR-213	536602.42	3364755.02	1297.92	100.58	237	-45
SCR-214	536880.83	3364963.93	1346.55	68.58	238	-45
SCR-215	536866.51	3364904.46	1343.26	42.67	235	-45
SCR-216	536975.97	3364926.17	1298.14	94.49	242	-45
SCR-217	536466.13	3364915.10	1373.82	100.58	236	-45
SCR-218	536587.36	3365265.58	1329.99	60.96	235	-45
SCR-219	536538.78	3364798.26	1333.03	121.92	235	-45
SCR-220	536618.21	3365283.13	1314.79	82.30	234	-45
SCR-221	536626.54	3364698.64	1309.02	140.21	235	-45
SCR-222	536597.38	3365313.48	1307.36	91.44	235	-45
SCR-223	536378.64	3365175.00	1380.30	115.82	39	-45
SCR-224	536582.30	3365358.47	1286.56	64.01	216	-45
SCR-225	536095.11	3364551.20	1314.45	170.69	221	-72
SCR-226	536571.48	3365379.65	1274.75	51.82	234	-45
SCR-227	536719.89	3365485.10	1266.53	100.58	234	-45
SCR-228	536558.50	3365420.51	1258.13	39.62	232	-45

	Easting	Northing	Elevation	Depth	Azimuth	Dip
Hole Id	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
SCR-229	536194.07	3364654.04	1307.57	173.74	202	-73
SCR-230	536561.87	3365462.87	1245.04	54.86	235	-45
SCR-231	536601.01	3365484.83	1248.86	94.49	229	-45
SCR-232	536677.85	3365650.15	1287.43	64.01	278	-45
SCR-233	536677.78	3365626.52	1299.46	67.06	233	-45
SCR-234	536103.31	3364452.93	1260.14	121.92	266	-56
SCR-235	536728.02	3365624.41	1294.92	103.63	233	-45
SCR-236	536114.77	3364416.14	1235.37	91.44	229	-67
SCR-237	536682.84	3365587.72	1296.78	33.53	235	-45
SCR-238	536698.74	3365556.38	1281.06	88.39	236	-45
SCR-239	536269.31	3364490.94	1192.15	70.10	251	-55
SCR-240	536108.89	3364656.02	1300.21	192.02	220	-55
SCR-241	536762.93	3365598.82	1305.12	143.26	233	-50
SCR-242	536709.45	3365533.02	1272.54	60.96	235	-50
SCR-243	536084.68	3364632.48	1293.76	192.02	229	-45
SCR-244	536626.01	3365170.81	1330.18	67.06	234	-45
SCR-245	536110.71	3365357.46	1286.07	91.44	258	-45
SCR-246	536125.49	3364696.01	1279.80	152.40	260	-45
SCR-247	536560.32	3365295.58	1333.08	51.82	0	-90
SCR-248	536110.55	3365281.03	1338.16	109.73	291	-65
SCR-249	536120.58	3365258.67	1349.66	100.58	260	-55
SCR-250	536245.88	3364413.72	1178.91	51.82	228	-45
SCR-251	536147.67	3365191.35	1395.48	140.21	276	-45
SCR-252	536291.33	3364645.70	1266.48	143.26	203	-48
SCR-253	536087.85	3365145.28	1394.66	94.49	246	-73
SCR-254	536555.53	3365285.13	1332.85	70.10	237	-45
SCR-255	536508.85	3365292.51	1327.65	70.10	237	-45
SCR-256	536082.76	3365112.49	1386.46	64.01	253	-50
SCR-257	536684.07	3365055.10	1353.87	82.30	236	-45
SCR-258	536629.62	3365028.92	1358.06	91.44	232	-45
SCR-259	536581.94	3365144.50	1340.00	82.30	235	-45
SCR-260	536533.59	3365113.04	1341.49	88.39	236	-45
SCR-261	536491.30	3365087.29	1340.97	19.81	235	-45
SCR-261B	536494.61	3365089.06	1341.22	82.30	234	-45
SCR-262	536571.95	3365214.16	1336.49	91.44	234	-45
SCR-263	536628.22	3365094.70	1346.89	82.30	235	-45
SCR-264	536589.20	3365071.20	1355.14	163.07	234	-45
SCR-265	536482.53	3364120.27	1340.05	140.21	273	-50
SCR-266	536480.75	3364116.00	1340.01	85.34	213	-45
SCR-267	536542.38	3364153.67	1352.36	164.59	226	-45
SCR-268	536504.02	3364099.27	1335.94	82.30	193	-50
SCR-269	536610.00	3364189.55	1345.75	140.21	225	-45
SCR-270	536585.59	3364367.80	1357.17	201.17	281	-45
SCR-271	538020.89	3364921.73	1339.30	134.11	71	-50
SCR-272	537944.70	3364961.99	1385.06	249.92	81	-45
SCR-273	538071.41	3365079.67	1341.07	70.10	268	-45
SCR-274	538038.17	3365130.16	1344.25	73.15	270	-50
SCR-275	537975.32	3365263.53	1376.89	48.77	235	-45

11.1.1.1	Easting	Northing	Elevation	Depth	Azimuth	Dip
Hole Id	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
SCR-276	537981.18	3364976.66	1371.83	204.22	93	-40
SCR-277	535966.28	3365067.84	1416.15	128.02	261	-45
SCR-278	536000.59	3365013.22	1386.42	207.26	258	-45
SCR-279	536021.88	3364894.71	1357.03	88.39	261	-45
SCR-280	536088.94	3364968.56	1338.69	143.26	262	-45
SCR-281	536678.02	3364508.23	1289.10	82.30	70	-45
SCR-282	536673.34	3364505.45	1289.26	128.02	259	-45
SCR-283	536585.51	3364499.87	1280.87	60.96	228	-45
SCR-284	536379.30	3364499.24	1237.78	82.30	255	-45
SCR-285	536415.96	3364511.30	1237.19	131.06	255	-45
SCR-286	536272.51	3364477.27	1194.17	111.25	222	-45
SCR-287	536208.88	3364470.73	1215.96	100.58	0	-90
SCR-288	536192.91	3364418.31	1216.52	118.87	213	-50
SCR-289	536228.04	3364440.13	1195.54	121.92	216	-60
SCR-290	536273.13	3364477.73	1194.29	134.11	222	-60
SCR-291	536280.69	3364435.63	1189.39	121.92	223	-80
SCR-292	536256.97	3364419.21	1179.47	112.78	229	-70
SCR-293	536224.36	3364596.26	1262.67	234.70	193	-48
SCR-294	535998.20	3365088.35	1415.15	173.74	261	-45
SCR-295	536044.28	3365046.89	1384.10	173.74	259	-45
SCR-296	536058.64	3364993.95	1360.93	152.40	264	-45
SCR-297	536049.42	3364936.47	1344.84	140.21	260	-45
SCR-298	536202.14	3364427.61	1216.40	128.02	0	-90
SCR-299	536228.71	3364440.48	1195.14	106.68	0	-90
SCR-300	536224.07	3364406.34	1193.44	134.11	0	-90
SCR-301	536406.34	3366439.18	1410.79	121.92	46	-55
SCR-302	536507.88	3366387.52	1402.28	91.44	44	-55
SCR-303	536601.36	3366325.48	1378.43	73.15	53	-45
SCR-304	536697.20	3366277.23	1389.97	76.20	56	-45
SCR-305	536701.06	3366253.77	1397.48	85.35	56	-45
SCR-306	536786.84	3366186.93	1410.63	103.63	55	-45
SCR-307	536047.54	3364531.93	1295.38	79.25	274	-45
SCR-308	536083.90	3364511.79	1296.47	91.44	271	-45
SCR-309	536116.28	3364513.15	1298.72	161.54	211	-58
SCR-310	536117.68	3364454.58	1260.09	112.78	258	-77
SCR-311	536128.92	3364457.21	1260.38	112.78	190	-66
SCR-312	536091.84	3364471.30	1269.61	82.30	271	-45
SCR-313	536102.47	3364583.89	1323.49	100.58	229	-45
SCR-314	536136.71	3364621.17	1326.97	121.92	229	-45
SCR-315	536164.93	3364650.82	1322.56	131.06	218	-45
SCR-316	536627.95	3364512.48	1283.15	100.58	277	-45
SCR-317	536632.35	3364580.69	1242.19	100.58	274	-45
SCR-318	536578.23	3364702.44	1283.80	83.82	237	-45
SCR-319	536538.25	3364701.85	1284.60	82.30	236	-45
SCR-320	536491.49	3364816.58	1360.57	121.92	236	-45
SCR-321	537318.92	3365334.94	1363.10	109.73	221	-45
SCR-322	537254.84	3365297.78	1359.48	70.10	236	-45
SCR-323	537374.71	3365331.05	1348.35	70.10	234	-45

	Easting	Northing	Elevation	Depth	Azimuth	Dip
Hole Iu	(UTM m)	(UTM m)	(m AMSL)	(m)	(°)	(°)
SCR-324	537335.04	3365300.18	1349.37	70.10	236	-45
SCR-325	537291.48	3365279.19	1346.97	70.10	237	-45
SCR-326	537321.64	3365249.50	1336.92	70.10	234	-45
SCR-327	537325.68	3365251.50	1337.34	70.10	236	-77
SCW-01	535610.95	3365521.70	1167.07	252.96	0	-90
SCW-02	534430.29	3367802.27	1123.27	252.96	0	-90

Source: Sonoro, 2023

A summary of significant intercepts is shown in Table 10.3.

Table 10.3
Significant Intercepts (0.15 Au cut-off)

Ball Hala	-		Mineralized Interval (m)			Grade (g/t)			
Drill Hole	Target		From	То	Total	Au	Ag		
SCD-001	JAPONESES		50.95	57.60	8.00	0.45	2.00		
SCD-002	JAPONESES		24.20	42.25	21.00	0.41	4.00		
SCD-003	JAPONESES		137.10	138.10	1.00	0.98	0.70		
SCD-004	JAPONESES			Metallurgica	I Testing Ho	ole			
SCD-005	ABEJAS		Metallurgical Testing Hole						
SCD-006	CUERVOS			Metallurgica	I Testing Ho	ole			
SCD-007	CUERVOS			Metallurgica	I Testing Ho	ole			
			0.00	4.10	4.10	0.29	1.00		
		and	35.35	40.60	5.25	0.80	5.00		
		and	81.50	87.50	6.00	0.41	4.00		
300-008	LLCOLORADO	and	101.95	113.65	11.70	0.92	2.00		
		includes	108.05	112.60	4.55	1.84	2.00		
		and	136.45	137.40	0.95	2.00	2.60		
SCD-009	CABEZA BLANCA	Metallurgical Testing Hole							
SCD-010	CABEZA BLANCA			Metallurgica	l Testing Ho	ole			
	VETA DE ORO		130.50	131.17	0.67	0.87	73.20		
SCD-011		and	152.65	153.75	1.10	1.06	3.70		
		and	167.75	170.75	3.00	0.48	3.90		
SCD-012	JAPONESES			Metallurgica	I Testing Ho	ole			
SCD-013	JAPONESES			Metallurgica	I Testing Ho	ole			
SCD-014	JAPONESES			Metallurgica	l Testing Ho	ole			
SCD-015			176.50	192.75	16.25	0.67	5.30		
300-013	VEIADEORO	includes	182.50	185.50	3.00	2.09	1.00		
			10.25	11.40	1.15	0.79	42.90		
		and	18.45	27.55	9.10	0.34	2.00		
SCD 016		and	38.00	40.70	2.70	0.85	2.70		
300-010	EL COLORADO	and	156.85	168.10	11.25	1.08	2.80		
		includes	162.20	163.20	1.00	2.88	2.00		
		includes	167.50	168.10	0.60	11.50	4.20		
		and	178.50	184.10	5.60	2.83	2.50		
	ABEL		13.25	16.30	3.05	0.30	0.60		

			Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag		
SCD-017		and	131.20	132.40	1.20	0.79	13.50		
		and	188.35	192.20	3.85	0.33	0.40		
			12.60	14.70	2.10	0.55	66.00		
SCD-018	EL RINCON	and	51.50	62.20	10.70	0.29	4.20		
		and	104.40	108.00	3.60	0.27	0.30		
SCD 010			14.45	16.05	1.60	0.84	247.00		
3CD-019	EL RINCON	and	41.30	46.20	4.90	0.25	3.00		
		and	18.25	23.00	4.75	0.46	3.30		
500 020		and	53.30	60.00	6.70	0.27	1.90		
300-020		and	67.20	88.15	20.95	0.50	25.00		
		includes	81.30	82.95	1.65	2.50	124.00		
			10.65	12.65	2.00	1.04	1.60		
		and	40.40	44.40	4.00	0.35	3.40		
		and	57.35	61.85	4.50	0.19	0.80		
SCD-021	EL RINCON	and	95.85	71.00	5.15	0.21	3.30		
		and	116.40	137.40	21.00	0.88	18.00		
		includes	120.90	123.80	2.90	3.86	48.00		
		and	142.90	152.40	9.50	0.40	1.70		
SCD-022	BUENA SUERTE			Metallurgica	l Testing Ho	ole			
			4.00	8.00	4.00	0.32	3.40		
		and	10.00	12.00	2.00	0.93	5.40		
		and	20.00	23.35	3.35	0.17	2.90		
SCD-023	EL COLORADO	and	49.70	58.15	8.45	1.40	1.60		
		includes	52.30	54.15	1.85	4.76	3.40		
		and	89.60	95.00	5.40	0.67	0.70		
	EL COLORADO		45.20	46.35	1.15	1.55	0.40		
SCD 024		and	49.90	55.60	5.70	1.25	3.60		
3CD-024		includes	51.15	52.05	0.90	6.22	6.90		
		and	60.10	65.70	5.60	0.48	3.40		
SCD-025	EL COLORADO		96.15	97.00	0.85	1.10	6.90		
			8.50	10.85	2.35	1.12	3.40		
		and	19.00	21.95	2.95	0.25	1.80		
SCD-026	FL COLORADO	and	24.95	26.45	1.50	1.22	1.20		
368 020		and	38.75	47.15	8.40	0.72	3.80		
		includes	40.70	42.75	2.05	1.56	5.00		
		includes	44.80	45.70	0.90	1.54	4.40		
			27.60	28.80	1.20	1.90	2.70		
SCD-027	EL COLORADO	and	41.00	48.20	7.20	0.60	2.20		
000 021		includes	42.15	43.95	1.80	1.51	4.60		
		and	91.80	93.00	1.20	2.77	3.70		
			62.00	66.80	4.80	0.51	4.40		
SCD-028	EL COLORADO	and	77.10	81.50	4.40	0.63	2.90		
		and	118.30	124.30	6.00	0.89	5.00		
			13.00	16.90	3.90	0.36	0.40		
SCD-029	GUADALUPE	and	21.50	22.50	1.00	1.21	1.50		
		and	29.55	33.45	3.90	0.23	1.10		

			Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	larget		From	То	Total	Au	Ag		
			25.75	29.10	3.35	0.35	1.00		
CCD 020		and	38.30	40.50	2.20	1.17	0.30		
SCD-030	CABEZA BLANCA	includes	38.30	39.60	1.30	1.82	0.40		
		and	43.40	52.70	9.30	0.72	3.20		
		includes	44.60	46.40	1.80	1.89	5.80		
			14.05	20.75	6.70	0.30	0.30		
SCD 021		and	46.50	49.50	3.05	0.47	0.30		
SCD-031	CADEZA DLANCA	and	52.10	67.10	15.00	0.50	3.00		
		and	93.45	97.55	4.10	0.70	4.20		
			106.00	112.50	6.50	0.51	6.00		
3CD-032	VETA DE ORO	includes	107.50	108.25	0.75	1.79	11.70		
			66.10	79.10	13.00	0.66	3.80		
SCD-033	VETA DE ORO	and	81.60	85.30	3.70	0.42	1.50		
			33.60	38.50	4.90	1.22	18.50		
SCD 024		includes	36.50	38.50	2.00	2.35	24.40		
SCD-034	VETA DE ORO	and	47.70	54.50	6.80	0.72	17.00		
		and	63.40	66.50	3.10	0.60	0.40		
SCD-035	VETA DE ORO		62.55	75.30	12.75	0.55	1.30		
SCD-036	VETA DE ORO		89.00	90.00	1.00	0.54	4.10		
			39.20	43.25	4.05	0.33	7.80		
		and	52.00	61.00	9.00	0.22	2.05		
SCD-037	REYNA DE PLATA	and	74.10	80.10	6.00	0.29	1.30		
		and	96.00	98.00	2.00	1.38	28.40		
		includes	96.00	97.00	1.00	2.60	47.60		
SCD-038	VETA DE ORO		51.40	55.10	3.70	0.43	33.50		
SCD-039	REYNA DE PLATA		14.10	16.30	2.20	1.66	39.60		
		includes	15.10	16.30	1.20	2.80	59.90		
		and	40.00	44.90	4.90	0.41	2.60		
SCD-040	EL RINCON		25.80	36.15	10.35	0.30	0.50		
		and	114.00	127.15	13.15	0.25	1.10		
SCD-041	EL RINCON		37.50	46.50	9.00	0.31	10.10		
		and	52.40	53.30	0.90	1.42	20.50		
		and	61.30	64.80	3.50	0.78	14.60		
		includes	62.30	63.30	1.00	1.36	29.50		
SCD-042	EL BELLOTOSO		22.00	24.40	2.40	0.62	43.10		
		and	58.20	63.10	4.90	0.24	1.10		
SCD-043	EL BELLOTOSO		13.90	16.90	3.00	1.45	11.50		
		and	24.60	38.70	14.10	0.39	3.60		
		and	46.90	62.70	15.80	0.38	2.20		
SCD-044	EL BELLOTOSO		24.00	34.50	10.50	0.69	12.30		
		includes	24.00	25.00	1.00	2.33	41.10		
		and	52.40	53.45	1.05	1.41	2.90		
		and	56.25	57.60	1.35	2.91	10.40		
SCD-045	VETA DE ORO		17.00	22.10	5.10	0.37	2.10		
		and	69.50	74.00	4.50	0.33	3.20		
SCD-046	EL BELLOTOSO		41.50	45.00	3.50	0.29	1.30		

	- .		Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag	
		and	75.45	78.50	3.05	2.26	2.30	
		includes	75.45	77.00	1.55	4.24	3.50	
SCD-047	EL BELLOTOSO		6.00	9.00	3.00	0.31	0.80	
SCD-048	EL BELLOTOSO		48.30	53.80	5.50	0.49	0.30	
SCR-001	JAPONESES		0.00	10.67	10.67	0.23	2.00	
		and	19.81	24.38	4.57	0.44	2.00	
		and	27.43	32.00	4.57	0.25	3.00	
		and	36.58	45.72	9.14	0.48	0.40	
		and	62.48	64.01	1.52	0.21	0.50	
		and	70.10	71.63	1.52	0.19	0.80	
SCR-002	JAPONESES		0.00	27.43	27.43	0.59	7.00	
		and	38.10	45.72	7.62	0.57	4.00	
SCR-003	JAPONESES		0.00	1.52	1.52	0.23	3.00	
		and	4.57	35.05	30.48	0.51	8.00	
		and	45.72	50.29	4.57	0.28	1.00	
		and	54.86	56.39	1.53	0.49	3.00	
SCR-004	JAPONESES		0.00	39.62	39.62	0.88	9.00	
		includes	3.05	9.14	6.09	2.88	20.00	
		and	42.67	45.72	3.05	0.18	4.00	
SCR-005	JAPONESES		1.52	12.19	10.67	0.69	21.00	
		and	18.29	28.96	10.67	0.60	1.00	
		and	36.58	39.62	3.04	0.28	2.00	
		and	45.72	50.29	4.57	0.24	1.00	
SCR-006	JAPONESES		0.00	10.67	10.67	1.25	21.00	
		includes	0.00	6.10	6.10	1.96	26.00	
		and	18.29	35.05	16.76	0.42	2.00	
		and	38.10	51.82	13.72	0.83	8.00	
SCR-007	JAPONESES		0.00	27.43	27.43	0.28	9.00	
		and	32.00	54.86	22.86	0.90	13.00	
		includes	33.53	38.10	4.57	2.26	20.00	
		and	60.96	68.58	7.62	0.26	3.00	
		and	71.63	73.15	1.52	0.54	2.00	
		and	76.20	77.72	1.52	1.83	4.00	
		and	83.82	85.34	1.52	0.32	0.30	
		and	99.06	102.11	3.05	0.20	4.00	
		and	160.02	161.55	1.52	0.20	0.50	
		and	164.59	166.12	1.52	0.74	0.50	
		and	196.60	213.36	16.76	0.24	1.00	
		and	216.41	219.46	3.05	0.14	1.00	
SCR-008	JAPONESES		0.00	36.58	36.58	0.54	4.00	
		and	39.62	44.20	4.58	0.42	10.00	
		and	51.82	57.91	6.09	0.32	7.00	
		and	73.15	74.68	1.52	0.17	0.80	
		and	77.72	79.25	1.52	0.28	3.00	
		and	82.30	85.34	3.05	0.46	1.00	
		and	94.49	97.54	3.05	0.18	1.00	

M			Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag		
SCR-008.b	JAPONESES		0.00	19.81	19.81	0.63	3.00		
		and	22.86	24.38	1.52	0.75	2.00		
		and	27.43	28.96	1.53	0.67	3.00		
SCR-009	JAPONESES		3.05	27.43	24.38	0.33	3.00		
		and	36.58	45.72	9.14	0.17	3.00		
		and	108.20	109.73	1.52	0.34	1.00		
		and	112.78	114.30	1.52	0.22	0.30		
SCR-010	JAPONESES		0.00	1.52	1.52	0.37	0.60		
		and	6.10	15.24	9.14	0.71	10.00		
		and	18.29	36.58	18.29	0.26	2.00		
		and	42.67	44.20	1.53	0.18	0.80		
		and	56.39	57.91	1.52	0.72	1.00		
		and	80.77	82.30	1.52	0.41	0.30		
SCR-011	JAPONESES		0.00	7.62	7.62	0.38	3.00		
		and	10.67	12.19	1.52	0.20	0.90		
		and	21.34	24.38	3.04	0.93	5.00		
		and	32.00	33.53	1.53	0.24	4.00		
		and	39.62	73.15	33.53	0.57	6.00		
		includes	59.44	64.01	4.57	1.95	19.00		
		and	86.87	88.39	1.52	0.33	0.50		
SCR-012	JAPONESES		0.00	3.05	3.05	0.19	2.00		
		and	6.10	7.62	1.52	0.20	0.70		
		and	13.72	27.43	13.71	0.35	2.00		
		and	36.58	50.29	13.71	0.20	3.00		
		and	54.86	67.06	12.20	0.35	6.00		
		and	74.68	76.20	1.52	0.48	2.00		
		and	79.25	91.44	12.19	0.23	1.00		
SCR-013	JAPONESES		3.05	6.10	3.05	0.31	1.00		
		and	9.14	10.67	1.53	0.23	0.80		
		and	18.29	28.96	10.67	0.50	5.00		
		and	35.05	41.15	6.10	0.29	1.00		
SCR-014	CUERVOS		0.00	1.52	1.52	0.15	1.70		
		and	4.57	6.10	1.53	0.16	2.10		
		and	9.14	12.19	3.05	0.18	1.00		
		and	15.24	16.76	1.52	0.21	2.40		
		and	21.34	42.67	21.33	0.44	4.00		
SCR-015	CUERVOS		9.14	13.72	4.58	0.18	1.00		
		and	19.81	30.48	10.67	0.51	1.00		
		and	33.53	53.34	19.81	0.35	2.00		
ŀ		and	56.39	62.48	6.09	0.16	1.00		
SCR-016	CUERVOS		0.00	1.52	1.52	0.29	2.10		
		and	4.57	6.10	1.52	0.28	1.40		
		and	9.14	10.67	1.53	0.38	0.80		
		and	13.72	16.76	3.04	0.29	2.00		
		and	30.48	32.00	1.52	0.59	1.00		
		and	38.10	44.20	6.10	0.54	7.00		

B.:11.1.1.	-		Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	larget		From	То	Total	Au	Ag		
SCR-017	ABEJAS		64.01	71.63	7.62	0.33	12.00		
		and	76.20	85.34	9.14	0.48	10.00		
SCR-018	ABEJAS		73.15	80.77	7.62	0.31	4.00		
		and	94.49	96.01	1.52	0.23	0.80		
SCR-019	ABEJAS		27.43	47.24	19.81	0.52	7.00		
		includes	27.43	30.48	3.05	1.79	16.00		
		and	62.48	64.01	1.52	0.27	11.30		
SCR-020	CUERVOS		35.05	39.62	4.57	0.54	1.00		
		and	57.91	59.44	1.53	0.15	0.03		
		and	60.96	62.48	1.52	0.25	0.09		
		and	68.58	70.10	1.52	1.48	2.30		
SCR-021	CUERVOS		0.00	32.00	32.00	0.55	11.00		
		includes	4.57	6.10	1.53	2.31	17.40		
			24.38	27.43	3.05	2.13	65.00		
		and	44.20	47.24	3.04	0.17	1.00		
		and	54.86	56.39	1.53	0.49	4.00		
		and	60.96	64.01	3.05	0.50	2.00		
		and	67.06	68.58	1.52	0.20	5.20		
		and	88.39	91.44	3.05	0.24	1.00		
		and	132.59	134.11	1.52	0.17	2.20		
		and	144.78	146.31	1.52	0.19	1.20		
SCR-022	ABEJAS		25.91	39.62	13.71	0.75	14.00		
		includes	30.48	33.53	3.05	1.84	39.00		
		and	42.67	48.77	6.10	0.18	2.00		
		and	60.96	82.30	21.34	0.20	3.00		
		and	89.92	100.58	10.67	0.49	3.00		
SCR-023	CABEZA BLANCA		19.80	21.30	1.50	0.17	1.10		
		and	24.40	27.40	3.05	0.23	3.00		
		and	41.20	50.30	9.14	0.54	22.00		
SCR-024	CABEZA BLANCA		3.05	4.57	1.52	0.24	3.60		
		and	9.14	13.72	4.58	0.35	1.00		
		and	42.67	56.39	13.72	0.69	8.00		
		includes	48.77	53.34	4.57	1.36	16.00		
SCR-025	CABEZA BLANCA		3.05	4.57	1.52	0.18	1.20		
		and	24.38	25.91	1.53	0.15	0.07		
		and	32.00	45.72	13.72	0.68	11.00		
		includes	33.53	38.10	4.57	1.48	24.00		
SCR-026	CABEZA BLANCA		3.05	4.57	1.52	0.17	0.30		
		and	33.53	36.58	3.05	0.18	0.30		
		and	89.92	91.44	1.52	0.73	11.00		
		and	97.54	105.16	7.62	0.33	6.00		
		and	121.92	123.44	1.52	0.32	0.30		
		and	143.26	144.80	1.52	0.15	1.00		
		and	152.40	153.93	1.52	0.16	0.50		
SCR-027	CABEZA BLANCA		0.00	3.05	3.05	0.26	2.00		
		and	6.10	7.62	1.52	0.19	2.00		

			Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag	
		and	74.68	79.25	4.57	0.15	1.00	
		and	138.69	152.40	13.72	0.54	4.00	
SCR-028	CABEZA BLANCA		10.67	21.34	10.67	0.20	1.00	
		and	24.38	25.91	1.53	0.26	0.80	
		and	38.10	44.20	6.10	0.22	2.00	
		and	57.91	62.48	4.57	1.22	5.00	
SCR-029	ABEJAS		12.19	22.86	10.67	0.27	5.00	
		and	30.48	39.62	9.14	0.86	6.00	
		includes	33.53	35.05	1.52	2.02	5.80	
		and	47.24	62.48	15.24	0.72	4.00	
		includes	48.77	50.29	1.52	2.41	2.80	
		includes	53.34	54.86	1.52	2.64	9.50	
SCR-030	GUADALUPE		50.29	73.15	22.86	0.73	3.00	
		includes	50.29	60.96	10.67	1.26	3.00	
		or	50.29	51.82	1.53	5.20	1.30	
		and	79.25	82.30	3.05	0.40	2.00	
		and	85.34	86.87	1.52	0.21	1.40	
SCR-031	CABEZA BLANCA		1.52	3.05	1.53	2.18	0.70	
		and	10.67	12.19	1.52	0.20	0.25	
		and	28.96	35.05	6.09	0.46	3.00	
		and	38.10	39.62	1.52	0.22	0.70	
		and	51.82	54.86	3.04	0.29	1.00	
		and	67.06	68.58	1.52	0.25	0.25	
		and	73.15	77.72	4.57	0.55	0.50	
		and	86.87	88.39	1.52	0.22	0.25	
SCR-032	CABEZA BLANCA		12.19	13.72	1.53	0.29	3.00	
		and	22.86	27.43	4.57	2.30	15.30	
		and	32.00	36.58	4.58	0.51	0.90	
		and	41.15	42.67	1.52	0.26	0.70	
SCR-033	CABEZA BLANCA		4.57	16.76	12.19	0.82	8.50	
		includes	12.19	16.76	4.57	1.14	19.20	
SCR-034	CABEZA BLANCA		25.91	28.96	3.05	1.66	5.00	
		and	41.15	45.72	4.57	0.35	6.20	
		and	73.15	74.68	1.52	0.17	6.80	
SCR-035	CABEZA BLANCA		32.00	33.53	1.53	0.28	0.60	
		and	77.72	80.77	3.05	0.32	2.00	
SCR-036	EL COLORADO		6.10	10.67	4.57	4.67	1.90	
		and	13.72	15.24	1.52	1.24	2.40	
		and	25.91	30.48	4.57	0.41	1.00	
		and	35.05	38.10	3.05	0.34	1.00	
		and	97.54	99.06	1.52	0.31	1.70	
		and	112.78	114.30	1.52	0.23	0.50	
SCR-037	EL COLORADO		6.10	21.34	15.24	0.60	6.90	
		includes	9.14	15.24	6.10	1.04	7.50	
		and	59.44	60.96	1.52	0.22	3.40	
		and	64.01	65.53	1.52	0.24	3.70	

			Mineralized Interval (m)			Grade (g/t)		
Drill Hole	larget		From	То	Total	Au	Ag	
		and	67.06	68.58	1.52	0.22	7.70	
		and	79.25	80.77	1.52	0.23	2.30	
		and	102.11	106.68	4.57	0.32	1.50	
		and	146.30	149.35	3.05	0.17	1.00	
		and	164.59	166.12	1.53	0.16	0.50	
SCR-038	EL QUINCE		16.76	18.29	1.53	0.31	1.10	
		and	30.48	38.10	7.62	0.27	2.90	
		and	48.70	50.29	1.52	0.20	1.90	
		and	54.86	64.01	9.15	0.17	0.80	
		and	67.06	68.58	1.52	0.18	0.25	
		and	71.63	73.15	1.52	0.20	0.90	
SCR-039	EL COLORADO		22.86	24.38	1.52	0.32	0.90	
		and	33.53	36.58	3.05	0.26	1.00	
		and	42.67	44.20	1.53	0.18	0.90	
		and	67.06	68.58	1.52	0.81	0.25	
		and	117.35	120.40	3.05	0.38	2.00	
		and	123.44	128.02	4.58	0.41	1.00	
		and	131.06	135.64	4.58	0.24	0.70	
		and	141.73	143.26	1.53	0.17	1.10	
		and	150.88	153.92	3.05	0.59	4.00	
		and	156.97	158.50	1.53	0.18	2.80	
SCR-040	CABEZA BLANCA		22.86	24.38	1.52	0.39	0.25	
		and	45.72	50.29	4.57	0.24	3.30	
		and	70.10	71.63	1.53	0.30	3.50	
SCR-041	CABEZA BLANCA		0.00	4.57	4.57	0.18	0.40	
		and	13.72	38.10	24.38	0.42	6.50	
		includes	21.34	24.38	3.04	1.54	6.10	
			41.15	42.67	1.52	0.50	2.60	
SCR-042	CABEZA BLANCA		4.57	7.62	3.05	2.20	1.00	
		and	16.76	18.29	1.53	0.32	1.10	
		and	35.05	36.58	1.53	0.33	0.80	
		and	48.77	50.29	1.52	0.17	0.25	
		and	51.82	53.34	1.52	0.17	2.70	
		and	57.91	59.44	1.53	0.49	2.90	
		and	64.01	67.06	3.05	1.19	4.00	
SCR-043	SAN QUINTIN		28.96	30.48	1.52	0.24	9.10	
		and	32.00	33.53	1.53	0.16	4.00	
		and	44.20	47.24	3.04	0.59	14.00	
SCR-044	EL COLORADO		13.72	16.76	3.04	0.58	4.00	
		and	24.38	28.96	4.58	0.51	4.00	
		and	36.58	38.10	1.52	0.19	3.10	
		and	48.77	60.96	12.19	11.22	5.90	
		includes	51.82	57.91	6.09	21.58	8.20	
		and	85.34	92.96	7.62	2.07	15.70	
		includes	86.87	91.44	4.57	3.15	23.20	
SCR-045	EL COLORADO		15.24	21.34	6.10	0.76	2.80	

B.::	.		Mineralized Interval (m)		Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag
		and	41.15	45.72	4.57	0.34	4.30
		and	56.39	71.63	15.24	0.99	4.10
		includes	64.01	71.63	7.62	1.77	6.70
SCR-046	EL COLORADO		0.00	1.52	1.52	0.27	2.10
		and	24.38	25.91	1.53	0.43	37.30
		and	33.53	39.62	6.09	0.36	5.20
		and	59.44	60.96	1.52	0.19	4.00
		and	64.01	67.06	3.05	0.19	1.00
		and	89.92	91.44	1.52	0.27	0.60
SCR-047	EL RINCON		1.52	3.05	1.53	0.37	0.25
		and	30.48	33.53	3.05	0.17	1.50
		and	48.77	50.29	1.52	0.21	0.80
		and	53.34	64.01	10.67	0.71	2.10
		includes	53.34	57.91	4.57	1.26	2.50
		and	83.82	89.92	6.10	0.43	1.50
		and	92.96	94.49	1.53	0.32	0.90
		and	99.06	105.16	6.10	0.23	0.60
		and	109.73	112.78	3.05	0.36	0.50
SCR-048	EL RINCON		30.48	32.00	1.52	0.38	3.90
		and	94.49	96.01	1.52	0.64	0.50
SCR-049	EL RINCON		30.48	32.00	1.52	0.21	0.70
		and	36.58	38.10	1.52	0.17	0.25
		and	47.24	48.77	1.53	1.64	17.70
		and	59.44	62.48	3.04	0.85	1.20
		and	83.82	85.34	1.52	0.30	0.25
SCR-050	GLORIA		1.52	3.05	1.53	0.24	3.10
		and	6.10	9.14	3.04	0.36	1.20
		and	13.72	21.34	7.62	0.32	2.30
		and	32.00	33.53	1.53	0.16	1.50
		and	99.06	100.58	1.52	0.21	0.25
SCR-051	GLORIA		4.57	6.10	1.53	0.19	1.80
		and	73.15	79.25	6.10	0.39	4.20
		and	111.25	114.30	3.05	0.19	0.90
SCR-052	GLORIA		21.34	22.86	1.52	0.68	0.25
		and	51.82	53.34	1.52	0.20	0.25
		and	56.39	57.91	1.52	0.43	2.80
		and	86.87	88.39	1.52	0.23	0.90
		and	115.82	117.35	1.53	0.17	0.90
SCR-053	GLORIA		39.62	42.67	3.05	0.64	3.60
		and	51.82	57.91	6.09	0.26	1.30
		and	65.53	67.06	1.53	0.16	0.50
		and	68.58	73.15	4.57	0.18	0.30
		and	91.44	92.96	1.52	0.75	0.25
		and	96.01	97.54	1.53	0.16	0.25
SCR-054	El BOLUDITO		13.72	16.76	3.04	0.44	26.00
		and	25.91	38.10	12.19	0.27	2.70

B .:	-		Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag	
		and	41.15	44.20	3.05	0.26	7.00	
		and	80.77	82.30	1.53	0.31	0.80	
SCR-055	BUENA VISTA		13.72	16.76	3.04	0.16	5.90	
		and	19.81	45.72	25.91	0.27	1.50	
		and	50.29	57.91	7.62	0.25	2.10	
		and	68.58	73.15	4.57	0.57	3.10	
		and	115.82	117.35	1.53	0.16	1.20	
		and	121.92	134.11	12.19	0.45	1.60	
SCR-056	VETA DE ORO		35.05	36.58	1.53	0.34	22.70	
		and	67.06	76.20	9.14	1.76	23.70	
		includes	68.58	71.63	3.05	4.67	57.30	
		and	79.25	80.77	1.52	0.22	3.60	
SCR-057	VETA DE ORO		54.86	65.53	10.67	1.52	84.60	
		includes	56.39	62.48	6.09	2.46	132.60	
		and	68.58	76.20	7.62	0.37	2.90	
		and	82.30	83.82	1.52	0.19	0.70	
		and	86.87	88.39	1.52	0.55	1.60	
SCR-058	VETA DE ORO		56.39	64.01	7.62	0.45	2.70	
		and	67.06	73.15	6.09	0.19	1.40	
		and	77.72	79.25	1.53	1.42	1.40	
		and	112.78	115.82	3.04	0.61	2.80	
SCR-059	CHINOS NW		22.86	24.38	1.52	0.24	6.90	
		and	27.43	28.96	1.53	1.17	2.20	
		and	41.15	51.82	10.67	0.46	2.00	
		includes	45.72	48.77	3.05	1.01	2.10	
		and	57.91	60.96	3.05	0.48	5.90	
		and	71.63	73.15	1.52	0.72	1.40	
SCR-060	GUADALUPE		59.44	60.96	1.52	0.18	3.90	
SCR-061	GUADALUPE		30.48	32.00	1.52	0.47	0.25	
		and	36.58	51.82	15.24	0.52	2.80	
		and	53.34	54.86	1.52	0.19	7.80	
		and	73.15	76.20	3.05	0.17	1.60	
		and	79.25	82.30	3.05	0.16	2.60	
		and	91.44	97.54	6.10	0.43	2.80	
SCR-062	BUENA SUERTE		1.52	12.19	10.67	0.71	24.50	
		and	16.76	27.43	10.67	0.68	4.70	
		and	39.62	44.20	4.58	0.28	1.90	
		and	45.72	47.24	1.52	0.19	0.25	
		and	74.68	76.20	1.52	0.23	1.70	
		and	85.34	86.87	1.53	1.55	0.60	
SCR-063	BUENA SUERTE		32.00	44.20	12.20	0.44	4.70	
		and	50.29	57.91	7.62	0.23	4.80	
		and	64.01	68.58	4.57	0.41	5.30	
		and	71.63	74.68	3.05	0.21	2.90	
		and	86.87	88.39	1.52	0.17	0.70	
SCR-064	JAPONESES		0.00	1.52	1.52	0.36	13.40	

			Mineralized Interval (m)			Grade (g/t)		
Drill Hole	larget		From	То	Total	Au	Ag	
		and	6.10	10.67	4.57	0.38	22.10	
		and	13.72	16.76	3.04	0.64	22.80	
		and	24.38	27.43	3.05	0.24	3.70	
		and	35.05	44.20	9.15	1.23	1.80	
		includes	35.05	41.15	6.10	1.76	2.50	
		and	45.72	47.24	1.52	0.17	0.25	
		and	53.34	59.44	6.10	0.28	0.90	
		and	143.26	144.78	1.52	0.20	2.60	
SCR-065	JAPONESES		1.52	28.96	27.44	0.82	9.20	
		and	36.58	39.62	3.04	1.85	17.90	
		and	42.67	44.20	1.53	0.22	5.00	
		and	47.24	53.34	6.10	0.21	1.20	
		and	59.44	64.01	4.57	0.23	0.70	
		and	67.06	68.58	1.52	0.36	1.50	
		and	76.20	77.72	1.52	0.21	2.90	
		and	82.30	83.82	1.52	0.19	3.70	
		and	86.87	88.39	1.52	0.15	1.60	
		and	89.92	118.87	28.95	0.38	2.30	
		and	123.44	124.97	1.53	0.20	2.80	
SCR-066	CHINOS NW		0.00	6.10	6.10	0.50	4.70	
		and	10.67	12.19	1.52	0.24	1.40	
		and	18.29	19.81	1.52	0.18	1.80	
		and	24.38	30.48	6.10	0.50	1.40	
		and	39.62	41.15	1.53	0.15	12.30	
		and	44.20	45.72	1.52	0.18	0.50	
SCR-067	CHINOS ALTOS		9.14	13.72	4.58	0.26	0.70	
		and	21.34	27.43	6.09	0.28	2.30	
SCR-068	LA ESPAÑOLA		0.00	1.52	1.52	0.27	1.60	
		and	15.24	18.29	3.05	6.13	3.40	
		and	25.91	27.43	1.52	0.17	0.00	
		and	36.58	42.67	6.09	0.19	1.00	
		and	60.96	65.53	4.57	0.52	1.80	
		and	83.82	92.96	9.14	1.25	5.40	
		and	94.49	96.01	1.52	0.26	3.30	
		and	99.06	103.63	4.57	0.49	1.40	
		and	108.20	109.73	1.53	0.21	0.60	
SCR-069	CHINOS ALTOS		3.05	4.57	1.52	0.18	0.00	
		and	10.67	12.19	1.52	0.23	0.50	
		and	18.29	19.81	1.52	0.17	1.10	
		and	28.96	36.58	7.62	0.95	13.60	
		and	50.29	51.82	1.53	0.19	0.00	
SCR-070	CHINOS ALTOS		18.29	21.34	3.05	0.19	0.00	
		and	24.38	25.91	1.53	0.18	0.60	
		and	36.58	38.10	1.52	0.18	5.50	
		and	73.15	74.68	1.53	0.15	0.50	
		and	76.20	77.72	1.52	0.80	11.10	

			Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag		
		and	91.44	92.96	1.52	0.16	0.00		
SCR-071	CHINOS ALTOS		9.14	15.24	6.10	0.44	6.20		
		and	38.10	39.62	1.52	0.15	0.00		
		and	51.82	53.34	1.52	0.31	5.00		
SCR-072	JAPONESES		3.05	18.29	15.24	0.57	3.00		
		and	22.86	30.48	7.62	0.32	1.00		
		and	33.53	35.05	1.52	0.21	0.80		
		and	42.67	45.72	3.05	0.21	0.50		
		and	48.77	50.29	1.52	0.18	0.70		
		and	53.34	54.86	1.52	0.18	0.80		
		and	64.01	68.58	4.57	0.21	0.30		
SCR-073	JAPONESES		6.10	7.62	1.52	0.20	0.80		
		and	28.96	30.48	1.52	0.18	0.80		
		and	33.53	35.05	1.52	0.24	0.90		
		and	38.10	39.62	1.52	0.18	0.50		
		and	91.44	92.96	1.52	0.33	1.00		
SCR-074	JAPONESES		0.00	6.10	6.10	0.23	1.30		
		and	9.14	24.38	15.24	0.34	2.80		
		and	62.48	64.01	1.53	0.22	1.40		
		and	120.40	137.16	16.76	0.27	2.00		
		and	146.26	163.07	19.81	0.36	1.40		
SCR-075	JAPONESES		24.38	41.15	16.77	0.22	1.30		
		and	53.34	57.91	4.57	0.35	0.80		
		and	88.39	91.44	3.05	0.37	0.30		
		and	94.49	96.01	1.52	0.15	0.25		
		and	109.73	111.25	1.52	0.15	2.50		
SCR-076	JAPONESES		9.14	30.48	21.34	0.31	6.30		
		and	39.62	44.20	4.58	0.64	1.90		
		and	47.24	48.77	1.53	0.18	2.60		
		and	51.82	56.39	4.57	0.54	4.10		
		and	67.06	68.58	1.52	0.21	2.00		
		and	77.72	79.25	1.53	0.18	1.70		
		and	83.82	85.34	1.52	0.17	1.70		
		and	108.20	114.30	6.10	0.61	1.70		
		and	117.35	118.87	1.52	0.17	1.10		
SCR-077	CHINOS NW		10.67	13.72	3.05	0.19	3.00		
		and	18.29	22.86	4.57	0.35	3.60		
		and	77.72	79.25	1.53	0.43	0.90		
SCR-078	CHINOS NW		0.00	24.38	24.38	0.34	8.20		
SCR-079	CHINOS NW		10.67	12.19	1.52	0.19	7.30		
		and	16.76	22.86	6.10	0.31	7.50		
		and	27.43	39.62	12.19	0.44	3.60		
		and	44.20	45.72	1.52	0.21	0.60		
		and	51.82	54.86	3.04	0.29	1.00		
		and	57.91	59.44	1.53	0.24	0.90		
		and	65.53	70.10	4.57	0.21	1.70		

B. HULL	T errard		Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag		
SCR-080	CHINOS NW		1.52	4.57	3.05	0.22	3.00		
		and	9.14	16.76	7.62	0.36	6.10		
		and	19.81	22.86	3.05	0.20	0.90		
		and	41.15	42.67	1.52	0.79	1.10		
SCR-081	JAPONESES		4.57	13.72	9.15	0.32	3.70		
		and	42.67	44.20	1.53	0.71	0.70		
		and	56.39	60.96	4.57	0.18	0.50		
		and	80.77	88.39	7.62	0.77	1.10		
		includes	85.34	86.87	1.53	2.54	1.40		
		and	112.78	117.35	4.57	0.14	1.60		
SCR-082	JAPONESES		15.24	22.86	7.62	0.18	9.00		
		and	42.67	47.24	4.57	0.29	2.10		
		and	56.39	59.44	3.05	1.24	4.20		
		and	62.48	67.06	4.58	0.16	1.30		
		and	73.15	77.72	4.57	0.26	1.40		
		and	82.30	91.44	9.14	0.34	1.00		
		and	114.30	117.35	3.05	0.84	1.70		
SCR-083	JAPONESES		18.29	19.81	1.52	0.92	5.30		
		and	24.38	47.24	22.86	0.51	16.90		
		includes	36.58	38.10	1.52	3.16	36.40		
		and	50.29	54.86	4.57	0.15	1.00		
		and	59.44	77.72	18.28	0.20	1.80		
		and	80.77	83.82	3.05	0.29	0.50		
SCR-084	JAPONESES		64.01	79.25	15.24	0.51	13.60		
		includes	65.53	67.06	1.53	2.93	33.60		
		and	89.92	91.44	1.52	0.45	1.70		
SCR-085	JAPONESES		0.00	1.52	1.52	1.51	13.50		
		and	13.72	22.86	9.14	0.26	2.40		
		and	28.96	50.29	21.33	0.38	7.10		
		and	54.86	64.01	9.15	0.62	1.80		
		includes	59.44	60.96	1.52	2.18	1.30		
SCR-086	JAPONESES		38.10	39.62	1.52	0.47	0.50		
		and	50.29	53.34	3.05	0.28	0.90		
		and	57.91	60.96	3.05	0.21	0.40		
SCR-087	JAPONESES		45.72	50.29	4.57	0.26	1.20		
		and	57.91	60.96	3.05	0.17	3.00		
SCR-088	JAPONESES		21.34	28.96	7.62	0.24	0.60		
SCR-089	CHINOS NW		0.00	22.86	22.86	0.57	7.10		
		includes	7.62	10.67	3.05	1.82	13.10		
		and	32.00	35.05	3.05	0.18	2.90		
SCR-090	CHINOS NW		4.57	13.72	9.15	0.43	7.50		
		includes	16.76	27.43	10.67	0.25	2.30		
		and	56.39	64.01	7.62	0.25	1.40		
SCR-091	JAPONESES		0.00	4.57	4.57	0.18	2.20		
		includes	9.14	15.24	6.10	0.30	3.70		
		and	54.86	57.91	3.05	0.16	4.30		

B.:///	-		Minera	lized Interv	Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag
SCR-092	JAPONESES		3.05	6.10	3.05	0.27	2.40
		and	9.14	13.72	4.58	0.22	1.80
		and	27.43	30.48	3.05	0.23	0.70
		and	85.34	86.87	1.53	0.56	1.30
		and	92.96	96.01	3.05	0.37	1.20
		and	100.58	102.11	1.53	0.49	1.60
		and	109.73	112.78	3.05	0.19	1.40
		and	117.35	124.97	7.62	0.36	3.40
SCR-093	JAPONESES		35.05	36.58	1.53	0.78	0.70
		and	53.34	54.86	1.52	4.83	0.25
		and	59.44	64.01	4.57	0.43	0.30
		and	96.01	97.54	1.53	0.44	0.50
SCR-094	JAPONESES		50.29	60.96	10.67	0.31	1.00
		and	64.01	70.10	6.09	0.29	0.70
		and	73.15	77.72	4.57	0.14	0.40
		and	82.30	94.49	12.19	1.13	1.80
		includes	86.87	89.92	3.05	2.67	2.20
SCR-095	JAPONESES		36.58	56.39	19.81	0.66	8.80
		includes	36.58	38.10	1.52	4.47	17.60
SCR-096	BUENA SUERTE		3.05	12.19	9.14	0.17	0.60
		and	65.53	67.06	1.53	0.16	0.20
		and	80.77	82.30	1.53	0.31	1.00
		and	105.16	121.92	16.76	0.84	7.70
		includes	105.16	109.73	4.57	2.42	7.27
		and	150.88	152.40	1.52	0.19	2.20
SCR-097	BUENA SUERTE		0.00	4.57	4.57	0.22	0.60
		and	22.86	24.38	1.52	0.27	0.30
		and	27.43	28.96	1.53	0.18	0.50
		and	36.58	38.10	1.52	0.48	2.30
		and	39.62	41.15	1.53	0.17	0.70
		and	45.72	47.24	1.52	0.16	0.90
		and	50.29	53.34	3.05	0.24	1.40
		and	60.96	73.15	12.19	0.51	1.40
		and	76.20	77.72	1.52	0.19	1.00
		and	80.77	82.30	1.53	0.19	0.90
		and	86.87	91.44	4.57	0.42	8.00
		and	92.96	94.49	1.53	0.18	1.90
		and	108.20	111.25	3.05	0.41	0.70
		and	115.82	121.92	6.10	0.24	0.70
SCR-098	BUENA SUERTE		6.10	7.62	1.52	0.33	1.80
		and	13.72	15.24	1.52	0.17	2.80
		and	16.76	22.86	6.10	0.46	5.20
		and	30.48	35.05	4.57	0.66	12.00
		includes	33.53	35.05	1.52	1.73	26.20
		and	38.10	41.15	3.05	0.26	0.50
		and	44.20	48.77	4.57	0.56	1.60

B.: Ultrate	.		Minera	lized Interva	Interval (m)		Grade (g/t)	
Drill Hole	Target		From	То	Total	Au	Ag	
		and	54.86	59.44	4.58	0.21	0.50	
		and	89.92	91.44	1.52	2.29	1.80	
		and	102.11	103.63	1.52	0.15	0.50	
SCR-099	JAPONESES		9.14	12.19	3.05	0.41	3.50	
		and	25.91	44.20	18.29	0.37	7.60	
		and	56.39	57.91	1.52	0.24	1.40	
		and	76.20	77.72	1.52	0.21	0.30	
		and	88.39	89.92	1.53	0.16	0.30	
SCR-100	CHINOS NW		1.52	3.05	1.52	0.15	1.00	
		and	6.10	7.62	1.52	0.17	1.20	
		and	15.20	16.80	1.52	0.34	4.00	
		and	18.30	19.80	1.52	0.16	2.40	
		and	25.90	27.40	1.52	0.28	5.20	
SCR-101	CHINOS NW		41.15	42.67	1.52	0.33	12.20	
		and	51.82	54.86	3.05	0.52	3.60	
SCR-102	EL BOLUDITO		24.38	27.43	3.05	0.21	0.30	
		and	42.67	44.20	1.52	0.16	0.60	
		and	45.72	47.24	1.52	0.29	0.80	
		and	56.39	57.91	1.52	0.16	0.50	
		and	59.44	67.06	7.62	0.26	0.60	
		and	70.10	74.68	4.57	0.23	0.40	
		and	80.77	82.30	1.52	0.29	0.30	
		and	86.87	88.39	1.52	0.21	0.30	
		and	152.40	153.92	1.52	0.60	3.60	
SCR-103	EL BOLUDITO		56.39	59.44	3.05	0.49	2.60	
		and	126.49	128.02	1.52	0.17	0.40	
		and	166.12	167.64	1.52	0.16	0.30	
SCR-104	JAPONESES		19.29	22.86	4.57	1.89	81.60	
		includes	21.34	22.86	1.52	5.30	211.00	
		and	28.96	32.00	3.05	0.21	3.00	
		and	35.05	38.10	3.05	0.26	2.00	
		and	41.15	56.39	15.24	1.28	4.00	
		includes	41.15	44.20	3.05	1.85	7.00	
		includes	47.24	50.29	3.05	2.00	4.00	
		includes	54.86	56.39	1.52	1.73	2.00	
		and	73.15	77.72	4.57	0.25	1.00	
		and	79.25	80.77	1.52	0.15	0.60	
		and	83.82	85.34	1.52	0.18	0.60	
		and	94.49	102.11	7.62	0.23	0.80	
SCR-105	JAPONESES		0.00	3.05	3.05	0.26	1.00	
		and	10.67	13.72	3.05	0.79	0.50	
		and	21.34	24.38	3.05	0.19	0.60	
		and	32.00	41.15	9.14	1.13	1.70	
		includes	33.53	35.05	1.52	3.26	3.50	
		and	51.82	53.34	1.52	0.33	0.30	
		and	56.39	65.53	9.14	0.47	0.50	

B .:	-		Mineralized Interval (m)		Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag
		and	80.77	83.82	3.05	0.34	0.10
		and	99.06	100.58	1.52	0.17	0.20
		and	262.13	263.65	1.52	0.27	1.90
SCR-106	JAPONESES		0.00	4.57	4.57	0.58	2.50
		and	7.62	15.24	7.62	0.61	1.82
		includes	10.67	12.19	1.52	1.88	1.20
		and	25.91	30.48	4.57	0.62	1.00
		and	33.53	36.58	3.05	0.22	0.50
		and	42.67	44.20	1.52	0.50	2.60
		and	47.24	48.77	1.52	0.43	0.60
		and	53.34	54.86	1.52	0.21	0.60
		and	56.39	73.15	16.76	0.85	1.10
		includes	64.01	67.06	3.05	1.81	1.40
		and	86.87	88.39	1.52	0.18	0.20
		and	91.44	97.54	6.10	0.59	0.40
		and	112.78	117.35	4.57	0.29	0.40
		and	121.92	123.44	1.52	0.93	0.30
		and	124.97	126.49	1.52	0.26	0.40
		and	134.11	141.73	7.62	0.31	0.40
		and	179.83	190.50	10.67	0.71	0.50
SCR-107	JAPONESES		15.24	16.76	1.52	0.24	0.80
		and	44.20	48.77	4.57	0.49	3.20
		and	64.01	62.53	1.52	0.16	0.30
		and	79.25	80.77	1.52	0.26	0.60
		and	155.45	160.02	4.57	0.30	0.20
SCR-108	JAPONESES		4.57	6.10	1.53	0.53	1.10
		and	42.67	44.20	1.53	0.20	0.50
		and	64.01	67.06	3.05	0.20	1.90
		and	74.68	76.20	1.52	0.15	0.60
		and	79.25	80.77	1.52	0.47	12.20
		and	109.73	114.30	4.57	0.25	2.20
		and	121.92	129.54	7.62	0.31	0.40
		and	152.40	153.92	1.52	0.18	0.10
		and	156.97	164.59	7.62	0.40	0.20
SCR-109	BUENA SUERTE		3.05	48.77	45.72	0.97	4.00
		includes	7.62	22.86	15.24	2.10	9.70
		and	53.34	54.86	1.52	2.68	0.70
		and	79.25	80.77	1.52	0.20	1.00
		and	102.11	103.63	1.52	0.17	3.20
		and	155.45	156.97	1.52	0.32	0.30
		and	173.74	176.78	3.05	0.25	0.30
SCR-110	BUENA VISTA		6.10	7.62	1.52	0.39	0.50
		and	19.81	24.38	4.57	0.25	0.60
		and	28.96	30.48	1.52	0.20	1.20
		and	44.20	45.72	1.52	0.17	0.20
		and	47.24	60.96	13.72	0.30	0.50

B .:			Mineralized Interval (m)		Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag
		and	102.11	114.30	12.19	0.94	3.20
		includes	103.63	109.73	6.10	1.47	2.50
		and	117.35	118.87	1.52	0.18	0.40
		and	131.06	165.64	4.58	0.57	0.40
			42.67	44.20	1.53	0.22	0.60
SCD 111		and	51.82	54.86	3.04	1.34	20.50
SCR-III	EL BOLODITO	includes	51.82	53.34	1.52	2.26	34.50
		and	59.44	65.53	6.09	0.22	1.70
			1.52	3.05	1.53	0.43	0.10
		and	13.72	16.76	3.04	0.32	0.50
		and	18.29	19.81	1.52	0.17	0.30
		and	22.86	25.91	3.05	0.36	0.40
SCR-112	BUENA VISTA	and	30.48	39.62	9.14	0.22	0.50
		and	42.67	70.10	27.43	0.48	0.70
		and	77.72	80.77	3.05	0.22	0.30
		and	99.06	100.58	1.52	0.25	0.10
		and	115.82	117.35	1.53	0.19	0.20
			4.57	7.62	3.05	0.26	0.40
		and	21.34	24.38	3.04	0.29	0.30
SCR-113	JAPONESES	and	27.43	28.96	1.53	0.18	0.30
		and	56.39	60.96	4.57	0.39	0.40
		and	65.53	67.06	1.53	0.27	0.20
			19.81	21.34	1.53	0.20	8.00
		and	22.86	24.38	1.52	0.22	2.30
		and	25.91	27.43	1.52	0.68	4.90
		and	30.48	47.24	16.76	0.33	6.50
SCD 114		and	70.10	73.15	3.05	0.43	1.20
SCR-114	JAPONESES	and	80.77	88.39	7.62	0.37	0.70
		and	91.44	92.96	1.52	0.16	0.70
		and	106.68	108.20	1.52	0.16	0.50
		and	111.25	112.78	1.53	0.19	0.40
		and	120.40	121.92	1.52	0.19	3.20
			0.00	4.57	4.57	0.54	6.00
		and	16.76	24.38	7.62	0.28	7.00
		and	32.00	44.20	12.20	0.22	3.60
SCR-115	BUENA VISTA	and	50.29	51.82	1.53	0.20	1.00
		and	54.86	60.96	6.10	0.22	5.40
		and	67.06	68.58	1.52	0.15	1.50
		and	73.15	82.30	9.15	0.54	2.30
			0.00	1.52	1.52	0.16	4.30
		and	15.24	19.81	4.57	0.21	7.50
SCR-116	BUENA VISTA	and	22.86	24.38	1.52	0.20	11.00
		and	27.43	32.00	4.57	0.43	12.00
		and	38.10	41.15	3.05	0.45	1.30
CCD 117			3.05	4.57	1.52	0.19	6.50
SCK-111	BUENA VISTA	and	24.38	25.91	1.53	0.15	1.60

Duill Hala	Townsh		Minera	Mineralized Interval (m)		Grade (g/t)	
Drill Hole	Target		From	То	Total	Au	Ag
		and	30.48	35.05	4.57	1.03	6.00
		includes	33.53	35.05	1.52	2.64	6.00
		and	38.10	39.62	1.52	0.18	2.30
		and	44.20	53.34	9.14	0.32	3.00
		and	56.39	70.10	13.71	0.36	0.40
			0.00	13.72	13.72	0.27	6.00
		and	18.29	27.43	9.14	0.23	7.00
SCR-118	BUENA VISTA	and	45.72	48.77	3.05	0.19	5.00
		and	50.29	70.10	19.81	0.57	5.00
		includes	62.48	64.01	1.53	2.34	17.00
			3.05	4.57	1.52	0.15	1.00
		and	9.14	10.67	1.53	0.19	2.00
		and	12.19	18.29	6.10	0.66	6.00
SCR-119	CUERVOS SE	and	21.34	22.86	1.52	0.17	3.00
		and	27.43	28.96	1.53	0.33	2.00
		and	56.39	57.91	1.52	0.17	3.00
		and	65.53	73.15	7.62	0.35	1.00
SCR-120	CUERVOS SE		18.29	22.86	4.57	0.31	3.00
			4.57	6.10	1.53	0.15	0.70
SCR-121	CUERVOS SE	and	25.91	27.43	1.52	0.26	0.40
		and	30.48	36.58	6.10	0.46	7.00
	CUERVOS SE		9.14	12.19	3.05	0.35	0.40
		and	19.81	21.34	1.53	0.32	0.40
CCD 100		and	25.91	27.43	1.52	0.22	2.00
SCR-122		and	33.53	35.05	1.52	0.17	1.00
		and	44.20	45.72	1.52	0.41	0.30
		and	48.77	51.82	3.05	1.12	4.00
CCD 100			12.19	13.72	1.53	0.28	0.20
SCR-123	CUERVUS SE	and	25.91	41.15	15.24	0.45	3.00
			3.05	4.57	1.52	0.23	0.90
		and	7.62	10.67	3.05	0.50	31.00
		and	12.19	13.72	1.53	0.16	1.00
		and	16.76	21.34	4.58	0.29	0.30
		and	22.86	24.38	1.52	0.19	0.20
SCR-124	BUENA SUERTE	and	39.62	42.67	3.05	0.30	1.00
		and	62.48	65.53	3.05	0.83	0.90
		and	71.63	77.72	6.09	3.99	9.00
		includes	76.20	77.72	1.52	7.80	15.00
		and	80.77	82.30	1.53	0.41	6.00
		and	92.96	94.49	1.53	0.76	0.60
			4.57	7.62	3.05	0.37	9.00
		and	83.82	86.87	3.05	0.25	0.50
		and	91.44	102.11	10.67	1.36	31.70
SCK-125	BUENA SUERTE	includes	91.44	94.49	3.05	4.20	96.80
		including	91.44	92.96	1.52	6.73	153.00
		and	112.78	120.40	7.62	0.57	4.00

B.:///	Mineralized Interval (m)		al (m)	Grade (g/t)			
Drill Hole	Target		From	То	Total	Au	Ag
		and	124.97	128.02	3.05	0.61	1.10
		and	135.64	138.68	3.04	0.22	7.40
			9.14	10.67	1.53	0.21	0.80
		and	15.24	25.91	10.67	0.24	0.70
	BUENA SUERTE	and	36.58	45.72	9.14	0.45	12.00
SCR-126		and	50.29	51.82	1.53	0.22	2.00
		and	53.34	54.86	1.52	0.17	3.00
		and	57.91	62.48	4.57	0.23	3.00
		and	80.77	82.30	1.53	0.43	2.00
			9.14	10.67	1.53	0.44	0.20
		and	36.58	38.10	1.52	0.21	0.20
CCD 107		and	41.15	51.82	10.67	0.96	13.00
SCR-127	BUENA SUERTE	includes	44.20	45.72	1.52	2.81	30.00
		and	59.44	62.48	3.04	0.36	2.00
		and	68.58	70.10	1.52	0.31	2.00
			22.86	25.91	3.05	0.41	0.20
SCR-128	BUENA SUERTE	and	35.05	47.24	12.19	0.35	4.00
		and	53.34	57.91	4.58	0.20	0.70
SCR-129	EL SULTAN		12.19	13.72	1.53	0.10	3.00
SCR-130	EL SULTAN		79.25	82.30	3.05	0.67	0.30
SCR-131	EL SULTAN		77.72	79.25	1.53	0.25	0.20
SCR-132	EL SULTAN		169.16	173.74	4.58	0.20	0.20
SCR-133	JAPONESES		0.00	45.72	45.72	0.36	2.20
	JAPONESES		0.00	3.05	3.05	0.29	4.40
		and	4.57	10.67	6.10	0.29	2.00
SCR-134		and	13.72	18.29	4.57	0.66	1.60
		and	21.34	27.43	6.09	0.25	0.70
		and	30.48	59.44	28.96	0.22	3.90
			0.00	9.14	9.14	0.20	1.60
CCD 125		and	12.19	24.38	12.19	0.45	1.40
SCR-135	JAPONESES	and	28.96	42.67	13.71	0.27	0.90
		and	48.77	70.10	21.33	0.58	0.50
			0.00	24.38	24.38	0.75	1.70
		includes	10.67	12.19	1.52	5.28	3.40
		and	28.96	33.53	4.57	0.23	1.50
SCR-136	JAPONESES	and	35.05	56.39	21.34	0.81	0.90
		includes	42.67	48.77	6.10	2.03	0.70
		and	65.53	68.58	3.05	0.34	0.20
		and	85.34	88.39	3.05	1.02	0.40
			3.05	16.76	13.71	0.23	0.60
CCD 127		and	22.86	30.48	7.62	0.31	0.50
3CK-131	JAPUNESES	and	47.24	60.96	13.72	0.47	0.30
		includes	57.91	59.44	1.53	1.72	0.50
			0.00	6.10	6.10	0.30	0.90
SCR-138	JAPONESES	and	18.29	22.86	4.57	0.32	1.30
		and	25.91	35.05	9.14	0.27	1.00

			Mineralized Interval (m)			Grade (g/t)		
Drill Hole	larget		From	То	Total	Au	Ag	
		and	45.72	60.96	15.24	0.40	0.30	
			1.52	10.67	9.15	0.36	1.60	
SCR-139	JAPONESES	and	21.34	24.38	3.04	0.45	0.50	
		and	57.91	59.44	1.53	1.91	0.15	
		and	68.58	71.63	3.05	0.68	45.40	
		includes	70.10	71.63	1.53	1.12	87.00	
CCD 140		and	77.72	82.30	4.58	0.39	1.00	
SCR-140	JAPONESES	and	86.87	108.20	21.33	0.47	4.60	
		includes	97.54	99.06	1.52	1.08	39.00	
		and	134.11	140.21	6.10	0.32	0.80	
			3.05	10.67	7.62	0.50	13.00	
		and	13.72	22.86	9.14	0.21	1.50	
		and	68.58	71.63	3.05	1.48	0.80	
SCR-141	BUENA SUERTE	includes	68.58	70.10	1.52	2.59	0.80	
		and	94.49	97.54	3.05	0.29	0.55	
		and	103.63	121.92	18.29	0.34	4.56	
		and	137.16	147.83	10.67	0.30	0.70	
			0.00	4.57	4.57	0.63	10.90	
		includes	1.52	3.05	1.53	1.42	19.80	
	BUENA SUERTE	and	9.14	15.24	6.10	0.40	2.10	
		and	50.29	57.91	7.62	1.32	18.80	
SCR-142		includes	54.86	57.91	3.05	2.15	38.60	
		and	62.48	67.06	4.58	0.30	12.70	
		and	74.68	86.87	12.19	0.97	19.50	
		includes	77.72	80.77	3.05	2.65	69.90	
		and	103.63	111.25	7.62	0.19	6.70	
			28.96	32.00	3.04	0.40	23.60	
		and	41.15	44.20	3.05	1.02	41.00	
		includes	41.15	42.67	1.52	1.80	71.90	
SCP-1/13		and	54.86	57.91	3.05	0.20	0.40	
301-143	DOLINA SOLITE	and	74.68	77.72	3.04	0.47	3.40	
		and	88.39	92.96	4.57	0.48	1.50	
		and	99.06	111.25	12.19	0.69	2.10	
		includes	99.06	100.58	1.52	1.74	10.90	
			59.44	62.48	3.04	0.21	2.00	
		and	65.53	88.39	22.86	0.57	8.40	
SCR-145	JAPONESES	and	91.44	102.11	10.67	0.45	4.20	
		and	112.78	117.35	4.57	0.17	0.70	
		and	138.68	144.78	6.10	0.21	0.80	
			21.34	25.91	4.57	0.24	9.40	
		and	67.06	80.77	13.71	0.60	8.00	
SCR-146	JAPONESES	includes	77.72	79.25	1.53	2.48	43.80	
		and	83.82	86.87	3.05	0.28	0.20	
		and	94.49	103.63	9.14	0.26	0.60	
SCR-147	IAPONESES		77.72	88.39	10.67	0.41	4.30	
3011-141		and	128.02	140.21	12.19	0.36	0.50	

B.:			Mineralized Interval (m)		Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag
			1.52	6.10	4.58	0.41	0.30
		and	16.76	44.20	27.44	1.17	2.40
SCR-148	BUENA SUERTE	includes	25.91	27.43	1.52	3.10	2.20
		includes	39.62	42.67	3.05	4.70	3.40
SCR-149	BUENA SUERTE		4.57	16.76	12.19	0.50	0.60
			0.00	6.10	6.10	0.32	2.30
SCR-150	JAPONESES	and	51.82	56.39	4.57	0.31	0.20
		and	64.01	67.06	3.05	0.22	0.30
			6.10	33.53	27.43	0.69	1.40
SCR-151	JAPONESES	includes	27.43	30.48	3.05	3.36	7.60
		and	48.77	51.82	3.05	0.32	0.40
CCD 152			38.10	41.15	3.05	0.28	0.80
SCR-152	JAPONESES	and	47.24	50.29	3.05	0.43	1.90
			13.72	21.34	7.62	0.23	0.40
SCR-153	BUENA VISTA	and	32.00	50.29	18.29	0.37	0.70
		includes	42.67	44.20	1.53	1.61	2.40
CCD 154			54.86	62.48	7.62	0.19	0.30
SCR-154	JAPONESES	and	88.39	94.49	6.10	0.51	0.40
			0.00	3.05	3.05	0.20	1.40
		and	70.10	74.68	4.58	0.63	1.50
SCR-155	JAPONESES	includes	70.10	71.63	1.53	1.58	2.80
		and	99.06	105.16	6.10	0.46	2.10
SCR-156	ABEJAS		59.44	62.48	3.04	0.40	4.30
SCR-157	ABEJAS		76.20	80.77	4.57	0.60	16.00
			53.34	59.44	6.10	0.73	18.20
		includes	56.39	59.44	3.05	1.35	26.70
3CR-130	DUENA SUERTE	and	62.48	67.06	4.58	0.30	6.10
		and	86.87	89.92	3.05	0.54	0.30
			19.81	27.43	7.62	3.09	7.30
SCD 150		includes	19.81	22.86	3.05	6.84	10.50
3CR-159	DUENA SUERTE	and	30.48	33.53	3.05	0.98	6.00
		includes	32.00	33.53	1.53	1.61	9.70
			0.00	4.57	4.57	0.75	0.90
SCP-160		includes	1.52	3.05	1.53	1.77	1.40
3CR-100	DOLINA SOLITI	and	9.14	16.76	7.62	0.20	0.90
		and	19.81	25.91	6.10	0.79	1.00
			35.05	38.10	3.05	0.40	0.30
SCR-161	BUENA SUERTE	and	74.68	77.72	3.04	1.15	1.20
JCI/-101	BUENA SUERTE	includes	74.68	76.20	1.52	2.11	1.50
		and	91.44	94.49	3.05	0.57	2.10
SCR-162	BUENA SUERTE		50.29	53.34	3.05	0.21	2.20
	BOLINA SOLITIL	and	73.15	76.20	3.05	0.24	1.00
SCR-163	BUENA SUERTE		25.91	27.43	1.52	0.33	0.20
			0.00	12.19	12.19	0.26	2.50
SCR-164	BUENA SUERTE	and	15.24	33.53	18.29	0.24	7.90
		and	57.91	60.96	3.05	0.48	1.60

	-		Mineralized Interval (m)		Grade (g/t)		
Drill Hole	larget		From	То	Total	Au	Ag
		and	67.06	70.10	3.04	0.20	2.80
		and	83.82	86.87	3.05	0.21	9.00
			0.00	3.05	3.05	0.26	1.90
SCR-165	BUENA SUERTE	and	6.10	10.67	4.57	0.36	1.40
		and	38.10	41.15	3.05	0.77	0.70
SCR-166	BUENA SUERTE		39.62	41.15	1.53	0.76	0.30
SCD 167			65.53	68.58	3.05	0.79	0.50
SCR-167	BUENA SUERTE	and	103.63	106.68	3.05	2.33	1.70
			12.19	15.24	3.05	0.80	3.30
SCR-168	BUENA SUERTE	and	51.82	56.39	4.57	0.49	0.50
		and	64.01	70.10	6.09	0.46	0.80
SCR-169	GLORIA		28.96	32.00	3.04	0.20	4.30
SCD 170			16.76	19.81	3.05	0.23	0.20
SCR-170	GLORIA	and	59.44	71.63	12.19	0.33	5.40
SCR-171	GLORIA		36.58	38.10	1.52	0.26	0.50
SCR-172	GLORIA			No Signifi	cant values		
SCR-173	GLORIA		62.48	64.01	1.53	1.32	12.40
			24.38	38.10	13.72	0.23	5.60
SCD 174		and	45.72	56.39	10.67	0.31	2.50
SCR-174	EL RINCON	and	67.06	77.72	10.66	0.24	1.90
		and	83.82	89.92	6.10	0.21	0.80
CCD 175			3.05	6.10	3.05	0.84	1.50
SCR-175	EL RINCON	and	12.19	16.76	4.57	0.20	0.90
SCR-176	GLORIA			No Signifi	cant values		
SCR-177	GLORIA			No Signifi	cant values		
SCR-178	GLORIA			No Signifi	cant values		
SCR-179	GLORIA		13.72	21.34	7.62	0.18	1.40
SCR-180	GLORIA			No Signifi	icant values		
SCR-181	GLORIA		22.86	24.38	1.52	1.47	0.15
			45.72	53.34	7.62	0.19	2.10
SCP-182		and	56.39	64.01	7.62	0.30	1.20
3CK-102		and	73.15	76.20	3.05	0.18	3.90
		and	83.82	92.96	9.14	0.34	0.50
SCP-183			16.76	21.34	4.58	0.27	2.50
3CK-105	EE DEELOTOSO	and	28.96	45.72	16.76	0.26	1.00
SCR-184	BUENA SUERTE		79.25	97.54	18.29	0.36	0.70
SCR-185	EL QUINCE			No Signifi	cant values		
			18.29	21.34	3.05	0.22	0.70
		and	25.91	28.96	3.05	0.38	0.20
SCR-186	BUENA SUERTE	and	60.96	67.06	6.10	0.52	0.30
		and	73.15	97.54	24.39	1.21	1.50
		includes	73.15	86.87	13.72	1.85	1.10
SCD 107			32.00	39.62	7.62	0.48	4.90
JCK-101	DULINA SUERTE	and	94.49	103.63	9.14	0.52	21.90
SCD 100			0.00	6.10	6.10	0.56	6.20
JCU-100	JAFUNLSES	and	28.96	33.53	4.57	0.28	0.70

B.:///	-		Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	larget		From	То	Total	Au	Ag		
		and	39.62	44.20	4.58	0.21	0.20		
			4.57	12.19	7.62	0.32	3.40		
SCR-189	JAPONESES	and	16.76	22.86	6.10	0.31	0.80		
		and	56.39	59.44	3.05	0.29	0.20		
			4.57	7.62	3.05	0.25	0.70		
CCD 100		and	18.29	21.34	3.05	0.57	0.50		
SCR-190	JAPONESES	and	32.00	36.58	4.58	0.26	0.20		
		and	39.62	44.20	4.58	0.26	0.50		
			28.96	32.00	3.04	0.41	0.70		
SCR-191	BUENA SUERTE	and	36.58	39.62	3.04	0.24	0.20		
		and	50.29	67.06	16.77	0.45	1.00		
SCR-192	JAPONESES		3.05	33.53	30.48	0.35	2.60		
SCR-193	BUENA SUERTE		19.81	27.43	7.62	0.45	1.10		
SCD 104		and	64.01	73.15	9.14	0.47	29.20		
3CR-194	DUENA SUERTE	and	77.72	83.82	6.10	0.27	1.90		
SCR-195	BUENA SUERTE		3.05	9.14	6.09	0.47	1.70		
			0.00	12.19	12.19	0.31	2.70		
SCR-196	BUENA SUERTE	and	22.86	35.05	12.19	0.38	1.50		
		and	41.15	71.63	30.48	0.29	3.40		
SCD 107			9.14	16.76	7.62	0.51	9.00		
3CR-197		and	24.38	33.53	9.15	0.31	2.00		
SCD 100			0.00	19.81	19.81	0.47	5.00		
3CR-196		and	24.38	38.10	13.72	0.28	2.00		
	JAPONESES		1.52	12.19	10.67	0.23	2.10		
SCR-199		and	22.86	32.00	9.14	0.21	0.60		
		and	33.53	36.58	3.05	0.21	0.40		
SCR-200	JAPONESES		3.05	19.81	16.76	0.45	2.00		
			71.63	80.77	9.14	0.74	32.80		
SCR-201	BUENA SUERTE	includes	74.68	76.20	1.52	2.10	37.40		
		and	92.96	96.01	3.05	0.20	4.40		
SCR-202	JAPONESES		19.81	41.15	21.34	0.24	1.20		
			82.30	88.39	6.09	0.71	6.20		
SCR-203	BUENA SUERTE	includes	85.34	86.87	1.53	2.04	4.60		
0011200	DOLINICOLINIE	and	94.49	97.54	3.05	0.33	1.60		
		and	109.73	112.78	3.05	0.18	3.10		
			4.57	7.62	3.05	0.17	0.20		
SCR-204	JAPONESES	and	10.67	21.34	10.67	1.36	0.70		
		includes	12.19	13.72	1.53	6.33	2.60		
SCR-205	BUENA SUERTF		74.68	83.82	9.14	0.59	2.50		
		includes	80.77	82.30	1.53	1.53	7.80		
SCR-206	JAPONESES		21.34	30.48	9.14	0.42	1.00		
			12.19	15.24	3.05	0.34	4.30		
		and	57.91	60.96	3.05	0.62	0.50		
SCR-207	BUENA SUERTE	and	64.01	71.63	7.62	0.29	1.70		
		and	77.72	79.25	1.53	0.30	58.80		
		and	96.01	99.06	3.05	0.17	0.50		

- ··· ·	Townsh		Minera	Mineralized Interval (m)		Grade (g/t)	
Drill Hole	Target		From	То	Total	Au	Ag
		and	100.58	103.63	3.05	0.31	0.30
		and	120.40	121.92	1.52	1.29	3.50
			3.05	6.10	3.05	0.21	0.70
SCR-208	JAPONESES	and	10.67	13.72	3.05	0.46	7.20
		and	22.86	41.15	18.29	0.21	0.50
			57.91	62.48	4.57	0.77	3.90
CCD 200		includes	57.91	59.44	1.53	1.79	8.30
SCR-209	BUENA SUERTE	and	70.10	74.68	4.58	0.32	6.20
		and	79.25	82.30	3.05	0.21	0.90
			1.52	24.38	22.86	0.32	0.80
CCD 210		and	27.43	30.48	3.05	0.37	0.50
SCR-210	JAPONESES	and	33.53	36.58	3.05	0.22	0.60
		and	39.62	44.20	4.58	0.20	2.00
			42.67	45.72	3.05	4.77	1.80
		and	65.53	68.58	3.05	0.34	10.10
SCR-211	BUENA SUERTE	and	71.63	74.68	3.05	0.23	6.40
		and	85.34	91.44	6.10	0.38	6.30
		and	100.58	103.63	3.05	0.39	2.10
665.010			4.57	9.14	4.57	0.20	2.10
SCR-212	JAPONESES	and	24.38	33.53	9.15	0.23	0.80
	BUENA SUERTE	and	12.19	15.24	3.05	0.29	0.90
		and	18.29	28.96	10.67	0.21	0.60
SCR-213		and	36.58	39.62	3.04	0.26	1.00
		and	60.96	64.01	3.05	0.37	0.40
	JAPONESES		3.05	21.34	18.29	0.58	11.50
		includes	4.57	6.10	1.53	1.55	36.70
SCR-214		includes	10.67	12.19	1.52	1.97	39.00
		and	24.38	27.43	3.05	0.24	1.60
		and	39.62	45.72	6.10	0.28	1.00
000.015			1.52	13.72	12.20	0.52	0.80
SCR-215	JAPONESES	and	24.38	28.96	4.58	0.25	3.70
			0.00	4.57	4.57	0.53	2.90
66D 316		and	19.81	22.86	3.05	0.19	1.00
SCR-216	JAPONESES	and	35.05	38.10	3.05	0.44	2.70
		and	82.30	86.87	4.57	0.28	0.70
000 017			10.67	15.24	4.57	0.16	4.20
SCR-217	EL QUINCE	and	70.10	73.15	3.05	0.18	1.80
			0.00	4.57	4.57	0.38	
SCR-218	JAPONESES	and	7.62	30.48	22.86	0.51	No Assay
		includes	7.62	9.14	1.52	1.95	,
			64.01	80.77	16.76	1.43	6.60
SCR-219	EL QUINCE	includes	67.06	68.58	1.52	6.48	20.60
	-	includes	73.15	79.25	6.10	1.87	10.40
			12.19	15.24	3.05	0.21	1.00
SCR-220	JAPONESES	and	35.05	57.91	22.86	0.53	1.80
		includes	50.29	51.82	1.53	1.84	8.40

B.:///	-		Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag		
		and	9.14	10.19	3.05	0.28	1.40		
		and	36.58	39.62	3.04	0.18	0.50		
		and	42.67	45.72	3.05	2.48	3.30		
CCD 221		includes	42.67	44.20	1.53	4.40	4.50		
SCR-221	BUENA SUERTE	and	53.34	56.39	3.05	0.32	1.10		
		and	100.58	103.63	3.05	0.92	6.70		
		and	111.25	117.35	6.10	2.30	0.70		
		includes	112.78	114.30	1.52	6.96	1.00		
			3.05	6.10	3.05	0.57	0.90		
SCR-222 BI		and	39.62	54.86	15.24	2.04	1.70		
SCR-222	BUENAVISTA	includes	45.72	51.82	6.10	3.15	2.80		
		including	47.24	48.77	1.53	3.99	3.30		
			0.00	4.57	4.57	0.85	3.70		
		includes	0.00	1.52	1.52	1.53	7.00		
		and	10.67	13.72	3.05	0.25	1.00		
CCD 222		and	27.43	35.05	7.62	0.26	1.90		
SCR-223	BUENA SUERTE	and	41.15	115.82	74.67	0.61	3.05		
		includes	79.25	80.77	1.52	1.54	12.50		
		includes	82.30	83.82	1.52	3.68	12.20		
		includes	94.49	96.01	1.52	2.31	9.80		
CCD 224		and	32.00	39.62	7.62	0.70	1.20		
SCR-224	BUENAVISTA	and	56.39	59.44	3.05	0.68	0.20		
	EL COLORADO		13.72	24.38	10.66	0.47	5.30		
		and	35.05	38.10	3.05	0.47	3.10		
		and	45.72	47.24	1.52	2.05	9.50		
		and	67.06	71.63	4.57	0.24	5.80		
SCR-225		and	89.92	92.96	3.04	0.28	6.80		
		and	131.06	138.68	7.62	1.16	0.70		
		includes	132.59	135.64	3.05	2.31	0.80		
		including	134.11	135.64	1.53	3.11	0.90		
			0.00	1.52	1.52	1.36	3.20		
SCR-226	BUENA VISTA	and	24.38	28.96	4.58	0.29	2.30		
		and	38.10	44.20	6.10	0.30	0.50		
			0.00	3.05	3.05	0.23	1.50		
		and	16.76	19.81	3.05	1.74	16.30		
SCR-227	JAPONESES	includes	16.76	18.29	1.53	2.54	28.20		
		and	25.91	36.58	10.67	0.37	0.90		
		and	67.06	71.63	4.57	0.15	0.20		
SCR-228	BUENA VISTA		0.00	19.81	19.81	0.36	1.50		
		and	25.91	28.96	3.05	1.33	1.50		
		includes	25.91	27.43	1.52	2.51	2.50		
SCR-229	EL COLORADO	and	76.20	79.25	3.05	0.29	1.10		
		and	82.30	86.87	4.57	0.34	1.10		
		and	155.45	161.54	6.09	0.22	1.30		
SCD 220			0.00	3.05	3.05	0.22	No Access		
3CR-23U	DUEINA VISTA	and	18.29	35.05	16.76	0.37	NO Assay		

B.:11.0.1.	T aura k		Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag		
			19.81	22.86	3.05	0.50	20.40		
SCR-231	BUENA VISTA	and	27.43	30.48	3.05	1.29	42.40		
		and	68.58	74.68	6.10	0.22	2.60		
SCR-232	EL BOLUDITO		27.43	33.53	6.10	0.20	2.10		
			10.67	12.19	1.52	0.32	0.40		
		and	18.29	19.81	1.52	0.16	0.60		
SCR-233	EL BOLUDITO	and	27.43	32.00	4.57	0.72	7.00		
		and	35.05	36.58	1.53	0.18	1.00		
		and	57.91	59.44	1.53	0.28	0.40		
			0.00	1.52	1.52	0.19	2.70		
		and	9.14	25.91	16.77	1.84	1.20		
		includes	13.72	18.29	4.57	5.63	4.70		
SCR-234	EL COLORADO	including	15.24	16.76	1.52	14.60	1.50		
		and	35.05	36.58	1.53	0.26	7.20		
		and	50.29	51.82	1.53	0.23	0.40		
		and	65.53	68.58	3.05	0.21	0.20		
			9.14	16.76	7.62	0.40	1.20		
		and	32.00	33.53	1.53	0.17	1.00		
SCR-235	EL BOLUDITO	and	59.44	60.96	1.52	0.58	2.00		
		and	68.58	73.15	4.57	0.16	0.50		
		and	76.20	79.25	3.05	0.38	1.90		
	EL COLORADO		0.00	3.05	3.05	0.52	1.80		
		and	6.10	7.62	1.52	0.34	2.80		
CCD 220		and	21.34	22.86	1.52	0.17	4.30		
SCR-236		and	35.05	36.58	1.53	0.17	1.10		
		and	59.44	62.48	3.04	0.17	0.70		
		and	65.53	67.06	1.53	0.27	2.40		
CCD 227			9.14	19.81	10.67	0.63	9.80		
SCR-231	EL BOLODITO	includes	13.72	15.24	1.52	2.09	39.20		
CCD 220			10.67	12.19	1.52	0.34	3.60		
SCR-238	EL BOLODITO	and	47.24	53.34	6.10	0.21	0.40		
			28.96	30.48	1.52	0.45	1.50		
SCR-239	EL COLORADO	and	56.39	64.01	7.62	2.43	2.40		
		includes	56.39	57.91	1.52	10.60	5.00		
			6.10	7.62	1.52	0.15	0.50		
		and	12.19	19.81	7.62	0.42	2.10		
		and	50.29	51.82	1.53	0.61	6.00		
SCR-240	EL COLORADO	and	59.44	65.53	6.09	0.36	2.90		
		and	67.06	68.58	1.52	0.29	1.10		
		and	71.63	77.72	6.09	0.25	2.80		
		and	115.82	124.97	9.15	0.19	7.50		
			9.14	13.72	4.58	0.17	0.80		
		and	18.29	28.96	10.67	0.43	1.20		
SCR-241	EL BOLUDITO	includes	19.81	21.34	1.52	1.67	4.10		
		and	39.62	41.15	1.53	0.16	0.60		
		and	65.53	67.06	1.53	0.16	2.10		

- ··· · ·			Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	larget		From	То	Total	Au	Ag		
		and	71.63	73.15	1.52	0.48	3.20		
		and	121.92	124.97	3.05	0.24	4.70		
			19.81	21.34	1.53	0.27	0.15		
SCD 242		and	24.38	27.43	3.05	0.34	3.20		
3CR-242		and	39.62	41.15	1.53	0.26	1.20		
		and	48.77	50.29	1.52	0.52	2.10		
			15.24	19.81	4.57	0.30	2.70		
SCR-243	EL COLORADO	and	53.34	54.86	1.52	0.16	9.20		
		and	120.40	121.92	1.52	0.21	13.90		
			0.00	24.38	24.38	0.40	5.90		
SCR-244	BUENA VISTA	and	44.20	45.72	1.52	0.19	1.30		
		and	54.86	56.39	1.53	0.21	0.40		
			7.62	10.67	3.05	1.12	0.40		
		includes	7.62	9.14	1.52	1.99	0.60		
		and	18.29	22.86	4.57	0.55	0.20		
SCR-245	CABEZA BLANCA	and	28.96	30.48	1.52	0.28	0.15		
		and	36.58	38.10	1.52	0.25	0.15		
		and	48.77	51.82	3.05	0.18	3.20		
		and	68.58	71.63	3.05	0.27	2.10		
	EL COLORADO		0.00	1.52	1.52	0.17	1.60		
SCD 246		and	7.62	9.14	1.52	1.43	0.70		
3CR-240		and	44.20	53.34	9.14	0.31	2.00		
		and	68.58	73.15	4.57	0.41	9.70		
	BUENA VISTA		1.52	3.05	1.53	0.17	1.40		
		and	7.62	33.53	25.91	0.58	3.30		
SCR-247		includes	16.76	19.81	3.05	1.78	13.10		
JCI(-2-1		incliding	16.76	18.29	1.53	2.37	18.50		
		and	36.58	45.72	9.14	0.90	1.20		
		includes	44.20	45.72	1.52	3.38	3.20		
			28.96	36.58	7.62	0.18	0.40		
		and	56.39	64.01	7.62	0.21	0.20		
SCR-248	CABEZA BLANCA	and	67.06	71.63	4.57	0.26	0.20		
		and	76.20	89.92	13.72	0.54	6.80		
		and	97.54	100.58	3.04	0.23	0.20		
			21.34	22.86	1.52	1.89	0.50		
SCR-249	CABEZA BLANCA	and	76.20	91.44	15.24	0.29	2.30		
		and	92.96	94.49	1.53	0.20	0.15		
SCR-250	FL COLORADO		3.05	4.57	1.52	0.78	0.90		
56R 250		and	19.81	25.91	6.10	0.24	1.10		
			7.62	12.19	4.57	1.05	2.10		
		includes	10.67	12.19	1.52	1.83	3.00		
		and	56.39	57.91	1.52	0.59	0.15		
SCR-251	EL COLORADO	and	60.96	62.48	1.52	0.26	0.30		
		and	89.92	94.49	4.57	0.28	1.10		
		and	100.58	106.68	6.10	0.28	1.10		
		and	109.73	112.78	3.05	0.22	2.90		

			Minera	Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag		
		and	115.82	120.40	4.58	0.20	1.50		
		and	124.97	129.54	4.57	0.70	3.90		
			16.76	21.34	4.58	0.28	0.30		
SCP-252	CAREZA ΒΙ ΑΝΙCA	and	25.91	28.96	3.05	0.37	0.60		
JCR-2J2	CADEZA DEANCA	and	80.77	82.30	1.53	0.16	0.60		
		and	137.16	140.21	3.05	0.20	1.70		
			19.81	25.91	6.10	0.27	1.50		
		and	64.01	76.20	12.19	0.79	5.10		
SCR-253	CABEZA BLANCA	includes	67.06	68.58	1.52	2.16	2.80		
		and	79.25	83.82	4.57	0.24	14.20		
		and	92.96	94.49	1.53	0.18	1.30		
			0.00	4.57	4.57	0.89	9.60		
		includes	0.00	1.52	1.52	1.67	22.60		
SCR-254	BUENA VISTA	and	10.67	15.24	4.57	0.28	0.40		
		and	18.29	21.34	3.05	0.21	0.50		
		and	24.38	27.43	3.05	0.52	0.70		
SCR-255	ΒΗΕΝΙΔ ΜΙΣΤΔ		21.34	24.38	3.04	0.35	0.60		
3CR-233	DOLINA VISTA	and	32.00	33.53	1.53	0.25	0.50		
			18.29	22.86	4.57	0.22	1.50		
SCD 256		and	33.53	45.72	12.19	1.07	5.70		
3CR-230	BUENA VISTA	includes	36.58	41.15	4.57	2.10	5.20		
		incliding	38.10	39.62	1.52	3.70	7.30		
SCR-257	BUENA SUERTE		0.00	27.43	27.43	0.24	2.40		
SCR-258	BUENA SUERTE		10.67	16.76	6.09	0.13	2.30		
SCP-259	BUENA SUERTE		4.57	7.62	3.05	0.12	1.20		
301-233		and	35.05	38.10	3.05	0.14	3.10		
			35.05	39.62	4.57	0.10	0.60		
301-200	BOEINA SOEINTE	and	80.77	86.87	6.10	0.45	2.60		
SCR-261	BUENA SUERTE		0.00	19.81	19.81	0.26	2.30		
SCP-261B	BUENA SUEDTE		10.67	32.00	21.33	0.34	4.80		
3CK-201D	BULINA SULKIL	and	36.58	50.29	13.71	0.23	0.80		
			3.05	33.53	30.48	0.24	2.00		
SCR-262	BUENA SUERTE	and	48.77	70.10	21.33	0.38	0.60		
		includes	62.48	64.01	1.53	2.17	1.80		
SCR-263	BUENA SUERTE		0.00	13.72	13.72	0.13	1.30		
			0.00	21.34	21.34	0.30	12.50		
		includes	4.57	6.10	1.53	1.59	135.00		
SCR-264	BUENA SUERTE	and	102.11	105.16	3.05	0.36	0.30		
		and	138.68	153.92	15.24	0.76	7.50		
		includes	140.21	141.73	1.52	2.40	1.70		
			0.00	6.10	6.10	0.88	2.30		
SCR-265	LA VENTANA	includes	4.57	6.10	1.53	2.14	5.20		
		and	13.72	16.76	3.04	0.39	0.60		
			36.58	45.72	9.14	1.04	17.10		
SCR-266	LA VENTANA	includes	36.58	38.10	1.52	2.28	1.80		
		includes	42.67	44.20	1.53	3.01	9.00		

B .:	Townst		Minera	Mineralized Interval (m)		Grade (g/t)	
Drill Hole	Target		From	То	Total	Au	Ag
SCR-267	LA VENTANA		16.76	19.81	3.05	0.38	0.80
SCR-268	LA VENTANA		21.34	25.91	4.57	0.16	2.00
SCR-269	SAN QUINTIN		33.53	38.10	4.57	0.32	4.00
SCR-270	SAN QUINTIN		24.38	27.43	3.05	0.45	2.90
SCD 271			48.77	51.82	3.05	0.22	0.50
3CR-271	LA ESPANOLA	and	99.06	106.68	7.62	0.23	3.50
SCR-272	LA ESPAÑOLA		Devia	ted hole, did	not cut the s	structure	
SCR-273	LA ESPAÑOLA		64.01	67.06	3.05	0.34	0.20
SCR-274	LA ESPAÑOLA		36.58	39.62	3.04	0.24	0.40
SCR-275	LA ESPAÑOLA		13.72	18.29	4.57	0.30	7.90
			9.14	13.72	4.58	0.19	0.20
		and	27.43	30.48	3.05	0.39	0.60
SCD 276		and	39.62	44.20	4.58	0.77	0.60
3CR-270	LA ESPANOLA	includes	39.62	41.15	1.53	1.89	0.50
		and	141.73	144.78	3.05	0.73	11.00
		and	149.35	152.40	3.05	0.30	1.60
			57.91	80.77	22.86	1.55	18.40
SCR-277	GUADALUPE	includes	60.96	67.06	6.10	5.18	49.00
		incliding	60.96	64.01	3.05	9.10	73.90
			57.91	60.96	3.05	1.59	1.30
	GUADALUPE	includes	57.91	59.44	1.53	2.37	2.30
SCR-278		and	67.06	70.10	3.04	0.29	6.30
		and	71.63	79.25	7.62	0.18	0.20
		and	80.77	85.34	4.57	0.25	0.40
SCR-279	GUADALUPE		50.29	56.39	6.10	0.33	1.60
	GUADALUPE		0.00	9.14	9.14	0.75	1.70
		includes	3.05	4.57	1.52	2.52	6.50
		and	24.38	27.43	3.05	0.18	2.10
		and	57.91	62.48	4.57	0.52	1.50
SCR-280		and	80.77	83.82	3.05	0.19	0.20
		and	106.68	109.73	3.05	0.37	0.40
		and	112.78	117.35	4.57	0.20	2.20
		and	124.97	128.02	3.05	19.56	7.30
		includes	126.49	128.02	1.53	37.90	14.00
			0.00	16.76	16.76	0.26	0.70
CCD 201		and	21.34	33.53	12.19	0.24	0.30
SCR-281	SAN QUINTIN	and	73.15	76.20	3.05	0.96	0.90
		includes	73.15	74.68	1.53	1.68	1.40
			16.76	22.86	6.10	0.26	2.50
		and	45.72	54.86	9.14	0.34	0.70
SCR-282	SAN QUINTIN	and	100.58	103.63	3.05	0.60	0.90
	-	and	117.35	121.92	4.57	2.43	1.90
		includes	118.87	120.40	1.53	4.54	2.70
			0.00	3.05	3.05	0.32	0.50
SCR-283	SAN QUINTIN	and	19.81	25.91	6.10	0.84	1.20
	-	includes	22.86	24.38	1.52	2.96	3.00

			Minera	lized Interv	al (m)	Grad	e (g/t)
Drill Hole	larget		From	То	Total	Au	Ag
SCR-284	LA VENTANA			No Signifi	cant values		
SCR-285	LA VENTANA		4.57	7.62	3.05	0.24	0.80
			39.62	41.15	1.53	1.43	0.40
		and	50.29	53.34	3.05	0.22	1.80
		and	83.82	111.25	27.43	5.36	3.40
SCR-286	EL COLORADO	includes	86.87	91.44	4.57	7.16	6.30
		includes	96.01	100.58	4.57	22.09	8.00
		incliding	96.01	97.54	1.53	46.50	16.00
		includes	109.73	111.25	1.52	3.25	1.50
T			19.81	30.48	10.67	0.49	5.10
		includes	27.43	28.96	1.53	1.82	16.50
		and	44.20	48.77	4.57	2.18	1.70
SCR-287	EL COLORADO	includes	44.20	45.72	1.52	4.70	3.50
		and	71.63	74.68	3.05	0.45	0.60
		and	77.72	86.87	9.15	0.23	0.60
		and	91.44	94.49	3.05	0.24	1.90
CCD 200			1.52	4.57	3.05	0.41	1.80
SCR-288	ELCOLORADO	and	30.48	35.05	4.57	0.25	2.90
CCD 200			3.05	10.67	7.62	0.56	0.80
SCR-289	ELCOLORADO	includes	7.62	9.14	1.52	1.39	0.80
SCR-290	EL COLORADO		79.25	82.30	3.05	0.38	1.40
CCD 201	EL COLORADO		27.43	30.48	3.05	0.53	0.70
SCR-291		and	42.67	44.20	1.53	1.67	11.40
SCD 202	EL COLORADO		36.58	39.62	3.04	1.77	1.40
3CR-292		includes	38.10	39.62	1.52	3.37	1.40
	EL COLORADO		0.00	12.19	12.19	0.87	2.00
		includes	10.67	12.19	1.52	3.62	2.20
		and	65.53	67.06	1.53	1.85	0.80
SCR-293		and	134.11	140.21	6.10	0.92	1.50
		includes	134.11	135.64	1.53	2.22	1.60
		and	184.40	192.02	7.62	2.26	3.70
		includes	187.45	188.98	1.53	10.25	14.10
SCP-294			89.92	96.01	6.09	0.34	6.30
3011-2.94	OUNDALOI L	and	121.92	124.97	3.05	0.53	0.30
			1.52	15.24	13.72	0.38	1.10
SCP-205		and	102.11	114.30	12.19	0.38	3.00
3CI(-233	GOADALOIL	includes	112.78	114.30	1.52	1.46	1.50
		and	164.59	166.12	1.53	6.00	2.60
			0.00	7.62	7.62	0.67	2.90
		includes	4.57	6.10	1.53	1.84	6.20
SCP. 206	GUADALUPE	and	19.81	25.91	6.10	0.42	0.60
JUN-230	JUNDALUI L	includes	21.34	22.86	1.52	1.00	0.70
		and	32.00	36.58	4.58	0.31	1.40
		and	92.96	100.58	7.62	0.28	2.00
SCR-297	GUADALLIPE		0.00	4.57	4.57	0.42	3.20
301-231		and	79.25	83.82	4.57	0.17	1.40

	-		Minera	Mineralized Interval (m)		Grade (g/t)	
Drill Hole	larget		From	То	Total	Au	Ag
			12.19	18.29	6.10	0.46	2.20
		and	24.38	27.43	3.05	0.88	2.70
SCR-298	EL COLORADO	includes	24.38	25.91	1.53	1.46	4.70
		and	56.39	59.44	3.05	0.23	0.70
			9.14	13.72	4.58	0.50	0.50
SCR-299	EL COLORADO	and	57.91	68.58	10.67	9.02	5.20
		includes	57.91	64.01	6.10	15.56	8.70
			13.72	16.76	3.04	0.41	2.70
SCR-300	EL COLORADO	and	19.81	22.86	3.05	0.23	0.30
			10.67	21.34	10.67	0.50	0.80
		includes	10.67	12.19	1.52	1.80	1.00
		and	24.38	28.96	4.58	0.17	1.60
SCR-301	EL RINCON	and	35.05	53.34	18.29	0.20	0.50
		and	71.63	74.68	3.05	0.18	1.70
		and	79.25	85.34	6.09	0.41	2.40
		and	106.68	111.25	4.57	0.40	0.30
			16.76	22.86	6.10	0.26	14.00
SCR-302	EL RINCON	and	39.62	54.86	15.24	0.36	16.00
SCR-303	EL RINCON		25.91	32.00	6.09	0.24	7.90
	EL RINCON		10.67	13.72	3.05	0.46	33.60
		and	19.81	24.38	4.57	0.27	11.30
SCR-304		and	33.53	60.96	27.43	0.36	3.50
		includes	41.15	42.67	1.52	2.49	12.00
		and	65.53	68.58	3.05	0.32	2.50
	EL RINCON		1.52	4.57	3.05	0.32	3.90
		and	24.38	60.96	36.58	0.54	23.10
SCR-305		includes	27.43	28.96	1.53	3.59	360.00
		includes	35.05	36.58	1.53	3.32	8.50
			13.72	22.86	9.14	0.26	0.40
SCR-306	EL RINCON	and	42.67	51.82	9.15	0.48	0.80
		and	60.96	85.34	24.38	0.34	10.70
			4.57	9.14	4.57	0.78	1.10
		includes	6.10	7.62	1.52	1.15	1.10
CCD 207		and	16.76	22.86	6.10	0.41	0.50
SCR-307	EL COLORADO	and	28.96	38.10	9.14	9.58	1.40
		includes	28.96	35.05	6.09	14.17	1.60
		including	28.96	30.48	1.52	38.30	3.00
			41.15	54.86	13.71	0.32	1.20
		includes	47.24	48.77	1.53	1.06	0.70
SCR-308	EL COLORADO	and	77.72	79.25	1.53	1.08	1.10
		and	86.87	88.39	1.52	2.76	0.20
			19.81	25.91	6.10	1.37	10.70
SCR-309	EL COLORADO	includes	19.81	21.34	1.53	3.97	16.40
		and	65.53	82.30	16.77	0.21	2.10
CCD 210			18.29	21.34	3.05	0.35	4.10
SCK-310	EL COLORADO	and	24.38	27.43	3.05	0.77	2.30

B.:///			Mineralized Interval (m)			Grade (g/t)		
Drill Hole	Target		From	То	Total	Au	Ag	
		and	79.25	83.82	4.57	0.43	0.80	
CCD 211			19.81	22.86	3.05	0.42	2.70	
SCR-311	EL COLORADO	and	35.05	39.62	4.57	0.63	1.00	
SCR-312	EL COLORADO		10.67	16.76	6.09	0.21	3.20	
			30.48	51.82	21.34	0.56	6.10	
SCR-313	EL COLORADO	includes	36.58	39.62	3.04	1.52	15.60	
		and	85.34	96.01	10.67	0.26	1.60	
			3.05	6.10	3.05	1.19	1.80	
		includes	3.05	4.57	1.52	2.19	2.70	
SCR-314	EL COLORADO	and	68.58	70.10	1.52	1.08	5.70	
		and	79.25	86.87	7.62	0.72	2.60	
		includes	80.77	82.30	1.53	1.64	1.70	
			7.62	18.29	10.67	1.18	12.50	
		includes	15.24	16.76	1.52	3.27	33.90	
		and	28.96	33.53	4.57	1.09	2.10	
		includes	32.00	33.52	1.53	2.28	4.70	
SCR-315	EL COLORADO	and	48.77	53.34	4.57	0.50	0.70	
		and	88.39	91.44	3.05	0.23	0.50	
		and	97.54	128.02	30.48	0.44	1.50	
		includes	108.20	111.25	3.05	1.14	1.90	
		includes	121.92	123.44	1.52	1.08	2.80	
SCD 216			9.14	13.72	4.58	0.26	0.30	
SCR-310	SANQUINTIN	and	25.91	28.96	3.05	0.26	0.90	
SCR-317	BUENA SUERTE		53.34	56.39	3.05	0.30	1.90	
			15.24	18.29	3.05	0.93	5.30	
		includes	15.24	16.76	1.52	1.45	8.40	
SCD 210		and	30.48	32.00	1.52	9.57	1.20	
3CK-310	DUENA SUERTE	and	51.82	80.77	28.95	1.02	1.20	
		includes	62.48	64.01	1.53	2.07	2.20	
		includes	70.10	73.15	3.05	2.71	2.40	
SCR-319	BUENA SUERTE		16.76	35.05	18.29	0.33	7.50	
			13.72	21.34	7.62	0.34	5.60	
		and	33.53	38.10	4.57	0.85	4.80	
SCR-320	BUENA SUERTE	includes	35.05	36.58	1.53	2.11	8.00	
		and	50.29	54.86	4.57	0.24	1.70	
		and	57.91	60.96	3.05	0.18	0.20	
			0.00	15.24	15.24	1.34	8.80	
		includes	6.10	10.67	4.57	3.66	15.40	
SCD 221	AREIAS	and	21.34	27.43	6.09	0.51	0.40	
3CK-321	ADEJAS	and	36.58	45.72	9.14	0.22	1.60	
		and	53.34	54.86	1.52	1.11	0.80	
		and	88.39	92.96	4.57	0.35	1.80	
			9.14	16.76	7.62	0.37	1.50	
SCR-322	ABEJAS	and	27.43	45.72	18.29	0.79	5.40	
		includes	41.15	42.67	1.52	4.88	19.70	
SCR-323	ABEJAS	No Significant values						

Duill Hala	Townsh		Minera	alized Interv	Grade (g/t)				
	Target		From	То	Total	Au	Ag		
SCR-324	ABEJAS		0.00	16.76	16.76	0.26	2.40		
SCR-325	ABEJAS		0.00	6.10	6.10	0.18	0.70		
		and	12.19	21.34	9.15	0.41	0.20		
		includes	13.72	15.24	1.52	1.29	0.30		
		and	38.10	50.29	12.19	0.46	3.80		
		includes	44.20	45.72	1.52	1.57	12.90		
SCR-326	ABEJAS		4.57	9.14	4.57	0.30	4.10		
SCR-327	ABEJAS		No Significant values						

Source: Sonoro, 2023

11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

The data in the database come from the different drilling campaigns that have been conducted on the Project since 1997. There is limited information available related to the sampling and QA/QC procedures established by Cambior Inc. in the 1990's or by Paget in 2011 and 2012.

11.1 SECURITY MEASURES

11.1.1 Historical Data

There is limited documentation describing security measures employed by companies prior to Sonoro, although past reports state that security procedures were performed according to industry standards at that time.

Corex RC samples were collected at the drill rig by Corex geologists and transported to a house with locked storage in Magdalena de Kino. ALS then transported the samples from Magdalena de Kino to its preparation facility in Hermosillo.

11.1.2 Sonoro

Sonoro outcrop samples have been collected in numbered plastic bags with plastic zip tie closures. Numbered paper tags have been inserted into the bags to confirm identification. Bags have been locked in secure locations under the supervision of Sonoro staff and transported by Sonoro staff to the ALS sample preparation facility in Hermosillo.

Core or RC samples have been collected at the drill site (RC) or core logging facilities (core) by transportation designated by the independent laboratory (ALS or BV). Sonoro started using BV in October, 2020, as well as continuing using ALS. Samples were shipped to the laboratory with the quicker turnaround time.

The ALS laboratory at Hermosillo is independent and ISO 9001:2008 accredited. The ALS quality management system (QMS) framework follows the most appropriate ISO standard for the service at hand i.e., ISO 9001:2015 for survey/inspection activity and ISO/IEC 17025:2017 UKAS ref 4028 for laboratory analysis.

BV maintains only ISO 17025 accreditation for its laboratory in Hermosillo. Sonoro maintains the technical data in a number of Excel files. A Sonoro geologist is responsible for updating the files, as new data are collected. The chief geologist reviews the updated information and is responsible for verifying that it is properly updated. Sonoro stores the data on a company server where the data are regularly backed up. Currently, the data is not stored in a specialized database software.

11.2 SAMPLE PREPARATION FOR ANALYSIS

11.2.1 Historical Data

There appears to be no documentation describing the sample preparation procedures for the Cambior samples.

Hitchborn states most of rock chip samples from the first 44 drill holes (CCR-01 to CCR-44) were assayed by ALS Chemex, and the remainder of the drill holes were assayed by Inspectorate de Mexico. ALS sample preparation was performed in Hermosillo, using the following procedure. Each sample was dried, and the entire sample was crushed to better than 70% passing a 2 mm (Tyler 10 mesh) screen. Using a riffle splitter, a split of up to 250 grams (g) was taken and pulverized to better than 85% passing a 75 microns (Tyler 200 mesh) screen.

The sample preparation performed by Inspectorate at its Sonora ISO certified sample preparation laboratory facilities. Each sample was dried, and the entire sample was crushed to better than 70% passing a 2 mm (Tyler 10 mesh) screen. Using a riffle splitter, a split of up to 250 g was taken and pulverized to better than 95% passing a 105-micron (Tyler 150 mesh) screen.

Paget (2011) drill samples were collected from split core over 1.5 m lengths, except where restricted by geology. Assays were completed by two independent laboratories, ALS Chemex and Laboratorio Tecnológico de Metalurgía (LTM), both in Hermosillo. LTM was an ISO/IEC 17025:2017 accredited laboratory at the time of the analysis was performed. ALS accreditations are discussed later in this Section.

11.2.2 Sonoro

Sonoro channel, RC and core samples prepared at ALS (code Prep-31) (ALS, 2023) were crushed to 70% less than 2 mm, riffle split to a 250 g sample and pulverized to 85% passing 75 microns. Samples prepared at BV (code PRP70-250) (BV, 2023) were crushed to 70% passing 2 mm, split to a 250 g sample and pulverized to 85% passing 75 microns.

11.3 SAMPLE ANALYSIS

11.3.1 Historical Data

There appears to be little documentation describing the sample analysis for the Cambior data,

Corex samples were assayed at ALS laboratory located in Vancouver, which was ISO 9001:2000 certified at that time. Gold was assayed in accordance with code Au-AA24, where 50 g of pulp subsample was assayed by fire assay and atomic absorption (AA) finish. A multi-element package was requested as code ME-ICP41a and was performed for all samples. It consists of an aqua regia digestion of a 0.5 g sample and ICP-AES finish. Screen assay checks were performed for 33 samples with several ranges of grade, based on a subsample size weighing 814 g on average, with 951 g maximum and 644 g minimum that was pulverized and split into two fractions, +100 microns and -100 microns. The entire +100-micron

fraction was assayed and the fraction that passed 100 microns was assayed twice by Au-AA25 (ore grade assay), using a subsample of 30 g.

Paget samples submitted to ALS were assayed by fire assays and ICP. The samples submitted to LTM were assayed by fire assays for gold and silver only. Due to the presence of coarse visible gold in some samples, numerous check samples were submitted to ALS for screened metallic assays, but the historic reports do not provide any details on the analytical methods.

11.3.2 Sonoro

For samples submitted by Sonoro, ALS analyzed gold using fire assay on a 30 g sample with an atomic absorption (AA) finish. Ag overlimits (> 100 g/t) were re-analyzed, using a four-acid digestion with ICP atomic emission spectroscopy (AES) or atomic absorption spectroscopy (AAS). BV analyzed gold by fire assay with an AAS finish and higher-grade silver by fire assay with a gravimetric finish. The analytical procedures for ALS and BV are summarized in Figure 11.1 and Table 11.2.

Table 11.1 ALS Analytical Methods

Laboratory	Stage	Method Code	Description		
ALS	Gold Determination	AU-AA23	Au 30 g fire assays AA finish		
ALS	Silver (>100 ppm)	AG-OG62	Ag by HF-HNO3-HClO4 digestion with HCl leach, ICP-AES or AAS finish. 0.4 g sample		

-	ME-ICP41									
Element	Range	Element	Range	Element	Range	Element	Range			
Ag	0.2-100	Со	1-10,000	Mg	0.01%-25%	Sc	1-10,000			
Al	0.01%-25%	Cr	1-10,000	Mn	5-50,000	Sr	1-10,000			
As	2-10,000	Cu	1-10,000	Мо	1-10,000	Th	20-10,000			
В	10-10,000	Fe	0.01%-50%	Na	0.01%-10%	Ті	0.01%-10%			
Ва	10-10,000	Ga	10-10,000	Ni	1-10,000	тι	10-10,000			
Ве	0.5-1,000	Hg	1-10,000	Р	10-10,000	U	10-10,000			
Ві	2-10,000	К	0.01%-10%	Pb	2-10,000	V	1-10,000			
Ca	0.01%-25%	Li	10-10,000	S	0.01%-10%	W	10-10,000			
Cd	0.5-1,000	La	10-10,000	Sb	2-10,000	Zn	2-10,000			
Ranges are in ppm unless otherwise specified										

Source: SRK, 2023

Table 11.2 BV Analytical Methods

Laboratory	Stage	Method Code	Description
BV	Gold Determination	FA430	30 g, fire assay, AAS finish
	Silver (>100 ppm)	FA530	30 g / fire assay / gravimetric

Element	Detection Limit	Upper Limit	Element	Detection Limit	Upper Limit
Ag	0.3 ppm	100 ppm	Mn	2 ppm	10000 ppm
Al	0.01%	10%	Мо	1 ppm	2000 ppm
As	2 ppm	10000 ppm	Na	0.01%	5%
В	20 ppm	2000 ppm	Ni	1 ppm	10000 ppm
Ва	1 ppm	10000 ppm	Р	0.001%	5%
Bi	3 ppm	2000 ppm	Pb	3 ppm	10000 ppm
Са	0.01%	40%	S	0.05%	10%
Cd	0.5 ppm	2000 ppm	Sb	3 ppm	2000 ppm
Co	1 ppm	2000 ppm	Sc	5 ppm	100 ppm
Cr	1 ppm	10000 ppm	Sr	1 ppm	2000 ppm
Cu	1 ppm	10000 ppm	Th	2 ppm	2000 ppm
Fe	0.01%	40%	Ті	0.001%	5%
Ga	5 ppm	1000 ppm	Τl	5 ppm	1000 ppm
Hg	1 ppm	50 ppm	U	8 ppm	2000 ppm
К	0.01%	10%	V	1 ppm	10000 ppm
La	1 ppm	10000 ppm	W	2 ppm	100 ppm
Mg	0.01%	30%	Zn	1 ppm	10000 ppm

Source: SRK, 2023

11.4 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

11.4.1 Historical Data

There appears to be no information related to control samples that were inserted during the Cambior drilling.

Hitchborn states that three types of control samples were inserted for the Corex drill program, including certified reference materials (CRM) from Rock Labs Ltd, field duplicate (50% of total sample) and blank material of barren outcrop mostly of shale without oxides or alteration (not certified). The insertion rate for the Corex QA samples is shown in Table 11.3. SRK found the insertion rates to be below the industry standard of 5%. The control charts in the Hitchborn report suggest that ALS assay accuracy was acceptable (Table 11.1), while the Inspectorate (Figure 11.2) results tended to be biased high. SRK could not determine if these batches were resubmitted and recommended that pulps from these drill holes should be sent for re-assay.

Chemex is now known as ALS and Inspectorate was acquired by BV.

There does not appear to be an issue with sample contamination at either ALS or BV, although, analysis did suggest that the blank material was not truly blank.

Table 11.3 Corex QA/QC Insertion Rate

Sample Type	Qty	%
Interval sample	4,982	93%
Duplicates	200	4%
Blank	118	2%
CRM	85	2%
Total	5,385	100%

Source: Hitchborn, 2018

Figure 11.1 Control Chart – OxC58 and OxH52 –Chemex

Source: Hitchborn, 2018

Figure 11.2 Control Chart – OxC58 and OxH52 – Inspectorate

Source: Hitchborn, 2018

Apparently, Paget samples were submitted with blanks and standards inserted every 10 m, however these data are not available.

11.4.2 Sonoro

The dataset of the 2022 Cerro Caliche Project drilling by Sonoro contains data from 37,547 RC chips and core samples, and includes all samples collected since the drilling campaigns in the late 1990's. Since Sonoro began its drill campaigns on the property in 2018, it has collected and analyzed 27,524 RC chip and core samples. Sonoro has established QC protocols for the systematic insertion of coarse blanks, certified refence materials (CRM) and duplicates. In addition to the 27,524 RC and core samples, Sonoro inserted a total of 2,567 control samples, equivalent to just over 9% of the assays completed. Table 11.4 summarizes the distribution of the control samples.

SRK recommended increasing the insertion rates to 5% for blanks, CRMs and duplicates.

Control Sample Type	Number	Percentage of Assayed Samples (%)
Coarse Blanks	1,013	3.7
CRM		
OXF125	202	
OXB130	213	
OxH139	41	
OxL118	2	2.9
OxL118*	34	
OxL159	156	
OxH163	150	
Duplicates		
Core	81	2.7
RC Chips	675	2.1
Totals	2,567	9.3

Table 11.4 Control Samples Insertion Rates

Source: SRK, 2023

11.4.3 CRMs

Sonoro supplied results from eight CRMs obtained from Rocklabs, located in Auckland, New Zealand. The results are summarized in Table 11.5. All of the biases are within the industry generally accepted range of ±5%. Control charts for CRMs OxB130 and OxF125 from both ALS and BV are shown in Figure 11.3 through Figure 11.6. SRK noted that both ALS and BV are biased slightly low for OxF125.

Table 11.5 CRM Summary

CRM	Count	Count ALS	Count BV	Certified Value	Mean Grade ALS	Mean Grade BV	Bias ALS	Bias BV
OxB130	213	109	103	0.125	0.124	0.128	-0.9%	2.8%
OxF142	6	6	0	0.805	0.804	N/A	-0.1%	N/A
OxF125	202	90	111	0.806	0.794	0.787	-1.5%	-2.3%
OxH163	150	45	103	1.313	1.323	1.302	0.8%	-0.8%
OxH139	41	41	0	1.312	1.310	N/A	-0.1%	N/A
OxL118	2	2	0	5.587	5.790	N/A	3.6%	N/A
OxL118	34	34	0	5.828	5.833	N/A	0.1%	N/A
OxL159	156	46	110	5.849	5.881	5.794	0.6%	-0.9%

Source: SRK, 2023

Figure 11.3 Control Chart - OxB130 - ALS

Source: SRK, 2023 MA= Moving Average BV is Certified Value

Figure 11.4 Control Chart - OxB130 - BV

MA= Moving Average BV is Certified Value

Figure 11.5 Control Chart – OxF125 – ALS

Source: SRK, 2023 MA= Moving Average BV is Certified Value

Figure 11.6 Control Chart - OxF125 - BV

Source: SRK, 2023 MA= Moving Average BV is Certified Value

Based on the CRM results, it was SRKs opinion that the accuracy demonstrated by both ALS and BV was acceptable. Both laboratories appear to be biased a bit low for results from OxF125 and this could be discussed with both laboratories to reduce this bias.

Blanks

Sonoro supplied results for 481 coarse blank samples from ALS and 532 coarse blank results from BV. Sonoro obtained the blank material from a rhyolitic tuff about 10 km southwest from the Project. A small number of samples were sent for analysis to confirm that this material was truly blank. SRK applied a five times lower detection limit to identify failures. Both laboratories had an approximate 2% failure rate. The results are shown in Figure 11.7 and Figure 11.8. In SRK's opinion, there was no evidence of systemic contamination at either ALS or BV.

Figure 11.7 Coarse Blank Results - ALS

Source: SRK, 2023

Figure 11.8 Coarse Blank Results – BV

Source: SRK, 2023

SRK did not observe any systematic material contamination at either laboratory.

11.4.4 Duplicates

Sonoro QC protocols include the insertion of field duplicates for both RC and core drilling. Protocols established that field duplicates for RC or core should be systematically inserted every 50 samples, although some exceptions were applied. In all cases, the insertion of duplicates was based on a systematic approach and no consideration was given to their location based on the mineralized intervals.

Sonoro provided duplicates from both RC and core samples, but the number of core duplicates were too few to provide meaningful results. SRK noted that RC duplicate samples were stored at the rig site. This does not follow good industry practice and SRK recommended that these samples be collected and moved to the secure warehouse in Cucurpe.

SRK evaluated the duplicate samples by calculating the Absolute Value of the Relative Difference (AVRD), equal to the absolute value of the pair difference divided by the pair mean. The procedure is as follows:

The AVRD values are sorted in ascending order, converted to percentages and plotted against their percentile rank. Because the relative percent differences are large near the detection limit, pairs near (less than 10 times) the detection limit are omitted when making this kind of comparison.

Duplicate assays provide an assessment of analytical precision. Coarse reject duplicates assess sample preparation and mineralization heterogeneity. The variability should be about 80% within \pm 30% for samples with nugget gold, and about 90% within \pm 20% for the other metals. Pulp duplicates should achieve a precision of better than \pm 10%, 90% of the time. Poorer results will be obtained for gold and silver where a nugget effect is prevalent.

The duplicate results obtained by both ALS (Figure 11.9) and BV (Figure 11.10) show a precision of 30% for approximately 60% of the samples. This is lower than expected and is likely due to the nature of the gold mineralization at Cerro Caliche. SRK recommended that Sonoro initiate submitting coarse reject or pulp duplicates to assess the sample preparation.

Figure 11.9 RC Field Duplicate Results - ALS

Source: SRK, 2023

Figure 11.10 RC Field Duplicate Results - BVFigure

Source: SRK, 2023

11.4.5 Actions

The quality control results were reviewed upon receipt by Sonoro's external consultant. Any CRM outside of the certified value ± three standard deviations was flagged as a failure. If a sample was flagged by Sonoro's external consultant as a failure, the assay laboratory was notified. The laboratory then reviewed the results of its internal QA/QC and, if the sample was still considered a failure, then 10 samples prior and subsequent to the failure were re-assayed. The assay certificate and results were updated and provided to Sonoro which in turns updated the drill hole database.

11.4.6 Results

Overall, the QA/QC results from the standard samples were within expected limits, with a few outliers. BV was biased high for Corex samples and both ALS and BV were biased slightly low for CRM OxF125.

Blank material results were generally within an acceptable error margin. The cleaning of the crusher and pulverizer is therefore seen to be of reasonable quality.

RC field duplicates exhibit low precision, but that is not unexpected with gold mineralization. Sonoro has not submitted coarse or pulp duplicates, so SRK was not able to comment on these. SRK recommended submitting coarse reject and pulp duplicates in future programs.

There have been no check assays submitted by Sonoro.

11.5 OPINION ON ADEQUACY

In SRK's opinion, the sample security at Cerro Caliche was adequate. However, the RC duplicate samples were left at the drill site under plastic sheets. SRK recommended that these be immediately collected and stored in secure warehouses.

The sample preparation and analytical methods follow industry guidelines for these types of deposits.

SRK recommended increasing both blank and CRM insertion rates to 5%.

The QA/QC results do not suggest any material problems with assay accuracy or laboratory contamination. Due to the absence of coarse or pulp reject duplicates, SRK could not comment on the assay precision. SRK recommended that Sonoro start submitting pulp or coarse reject duplicates, rather than field duplicates, at a 5% submission rate.

SRK recommended that, if possible, Corex samples assayed at Inspectorate be re-assayed, as the control charts suggest that Inspectorate may have been biased high, however, due to the limited number of holes assayed by Inspectorate and the number of holes drilled by Sonoro, this finding is not material to the integrity of the mineral resource estimate.

SRK recommended submitting coarse reject and pulp duplicates in future programs.

SRK also recommended submitting 5% of pulps to a laboratory other than ALS or BV, as umpire assays.

In SRK's opinion, the assay data are of sufficient quality to support mineral resource estimation and a classification level of at least Indicated.

12.0 DATA VERIFICATION

12.1 PROCEDURES

All geological data used in the mineral resource estimation were reviewed and verified by Douglas Reid, P.Eng. and Scott Burkett, RM-SME, SRK Principal Consultants. SRK staff visited the Cerro Caliche Project with Sonoro staff on November 4 and 5, 2022. No active drilling was being performed during the site visit. SRK did not collect samples from the site outcrops, RC or diamond core as this had been done previously by other consultants. The site visit included:

- Review of the geology, available outcrop exposures, and general geological understanding.
- Review of historical and recent drill core, mineralized intercepts and procedures used to collect, record, store and analyze Project exploration data.
- Validation of a number of collar locations for both recent and historical drilling.
- A visit to the core storage facility in Cucurpe (13 km southwest of the Project) (Figure 12.2 and Figure 12.3).
- Observation of drill hole locations and an overview of claim/property boundaries in the field.

SRK used a hand-held GPS, to check the locations of a number of drill holes located on the Project site. These locations were compared to the drill hole database and all locations were found to agree within the accuracy of the handheld GPS unit. The locations checked are summarized in Table 12.1. A typical collar monument in shown in Figure 12.1.

Figure 12.1 Representative Collar Monument

Table 12.1
SRK Collar Validation – GPS Summary

Waypoint	Lat	Long	East	North	Elev	HoleID	East	North	Elev	Area	Company	Туре	Diff X	Diff Y
30	30.41867	-110.61656	536883.2	3365044.0	1339.6	CCR-04	536884.75	3365043.32	1340.53		COREX	RC	1.53	0.66
41	30.41983	-110.61776	536768.2	3365172.6	1361.5	CCR-32	536769.06	3365170.93	1362.42		COREX	RC	0.85	1.66
21	30.41959	-110.62102	536455.2	3365144.0	1350.3	CCR-47	536455.60	3365142.04	1353.61		COREX	RC	0.39	2.01
27	30.41942	-110.61680	536860.6	3365127.2	1355.3	CCR-74	536861.60	3365126.18	1355.19		COREX	RC	1.04	1.06
33	30.41810	-110.61639	536900.1	3364980.7	1332.8	SCD-004	536900.05	3364980.08	1332.49	Japoneses	Sonoro	DDH	0.00	0.58
14	30.41852	-110.62496	536077.0	3365024.7	1356.7	SCD-009	536075.43	3365024.20	1362.95	Cabeza Blanca	Sonoro	DDH	1.58	0.46
26	30.41943	-110.61680	536859.8	3365127.9	1354.7	scd-014	536861.88	3365126.63	1354.92	Japoneses	Sonoro	DDH	2.09	1.27
47	30.42711	-110.61544	536987.7	3365979.4	1449.6	SCD-015	536987.32	3365978.27	1451.66	Veta de Oro	Sonoro	DDH	0.38	1.15
49	30.43226	-110.62256	536302.0	3366548.2	1419.9	SCD-020	536302.39	3366546.19	1421.66	El Rincon	Sonoro	DDH	0.35	1.96
48	30.42832	-110.61812	536730.4	3366112.3	1429.1	SCD-038	536730.44	3366111.31	1429.57	Veta de Oro	Sonoro	DDH	0.07	0.99
36	30.41776	-110.61654	536885.7	3364943.4	1345.4	SCR-002	536887.16	3364941.75	1346.53	Japonesas	Sonoro	RC	1.49	1.62
34	30.41812	-110.61638	536901.0	3364983.3	1333.9	SCR-004	536901.24	3364983.18	1332.69	Japonesas	Sonoro	RC	0.24	0.14
31	30.41845	-110.61643	536895.9	3365019.1	1339.0	SCR-005	536896.07	3365019.48	1335.91	Japonesas	Sonoro	RC	0.18	0.38
13	30.41920	-110.62460	536111.2	3365100.1	1368.4	SCR-024	536110.60	3365100.70	1372.01	Cabeza Blanca	Sonoro	RC	0.64	0.57
17	30.41827	-110.62472	536100.2	3364996.8	1341.0	SCR-041	536100.85	3364997.84	1343.05	Cabeza Blanca	Sonoro	RC	0.60	1.03
20	30.41984	-110.62126	536431.4	3365172.0	1370.7	SCR-062	536430.70	3365170.66	1369.38	Buena Suerte	Sonoro	RC	0.69	1.35
40	30.41968	-110.61779	536765.5	3365155.4	1359.7	SCR-081	536766.54	3365155.12	1363.08	Japoneses	Sonoro	RC	1.06	0.28
28	30.41981	-110.61674	536865.5	3365170.1	1357.7	SCR-008B	536866.87	3365169.57	1360.49	Japonesas NW	Sonoro	RC	1.36	0.58
22	30.41958	-110.62059	536495.8	3365144.0	1345.9	SCR-127	536494.22	3365143.77	1348.08	Buena Suerte	Sonoro	RC	1.61	0.19
42	30.42047	-110.61750	536793.1	3365243.0	1373.9	SCR-133	536793.77	3365239.93	1376.08	Japoneses	Sonoro	RC	0.64	3.11
29	30.41889	-110.61683	536857.7	3365068.2	1345.9	SCR-152	536858.82	3365067.51	1347.69	Japoneses	Sonoro	RC	1.13	0.66
50	30.43321	-110.62354	536208.0	3366652.9	1420.7	SCR-174	536207.79	3366651.45	1420.29	El Rincon	Sonoro	RC	0.18	1.45
39	30.41838	-110.61785	536759.9	3365011.1	1378.1	SCR-188	536760.77	3365010.45	1380.09	Japoneses	Sonoro	RC	0.85	0.64
38	30.41820	-110.61754	536789.9	3364991.9	1379.2	SCR-190	536789.54	3364991.23	1378.23	Japoneses	Sonoro	RC	0.31	0.68
37	30.41790	-110.61729	536813.7	3364958.2	1372.7	SCR-208	536814.14	3364958.18	1372.84	Japoneses	Sonoro	RC	0.45	0.02
35	30.41742	-110.61675	536865.7	3364905.6	1344.0	SCR-215	536866.51	3364904.46	1343.26	Japoneses	Sonoro	RC	0.78	1.17
46	30.41337	-110.62471	536102.8	3364453.6	1259.0	SCR-234	536103.31	3364452.93	1260.14	El Colorado	Sonoro	RC	0.49	0.66
25	30.41931	-110.62020	536533.9	3365113.3	1339.1	SCR-260	536533.59	3365113.04	1341.49	Buena Suerte	Sonoro	RC	0.28	0.25
23	30.41908	-110.62065	536490.8	3365088.1	1343.9	SCR-261	536491.30	3365087.29	1340.97	Buena Suerte	Sonoro	RC	0.46	0.80
24	30.41910	-110.62061	536494.2	3365090.3	1344.0	SCR-261B	536494.61	3365089.06	1341.22	Buena Suerte	Sonoro	RC	0.42	1.26
18	30.41738	-110.62555	536020.6	3364897.7	1349.3	SCR-279	536021.88	3364894.71	1357.03	Guadalupe	Sonoro	RC	1.31	2.99
15	30.41825	-110.62515	536058.7	3364994.7	1357.3	SCR-296	536058.64	3364993.95	1360.93	Guadalupe	Sonoro	RC	0.03	0.73
16	30.41773	-110.62525	536049.3	3364936.4	1340.1	SCR-297	536049.42	3364936.47	1344.84	Guadalupe	Sonoro	RC	0.16	0.11
45	30.41339	-110.62458	536115.0	3364456.1	1260.9	SCR-310	536117.68	3364454.58	1260.09	El Colorado	Sonoro	RC	2.68	1.49
43	30.41341	-110.62445	536127.9	3364458.2	1257.5	SCR-311	536128.92	3364457.21	1260.38	El Colorado	Sonoro	RC	1.05	1.01
12	30.41514	-110.62406	536164.6	3364650.2	1321.9	SCR-315	536164.93	3364650.82	1322.56	El Colorado	Sonoro	RC	0.33	0.65

134

Source: SRK, 2023

Sonoro Gold Corp.

Figure 12.2 Cucurpe Storage Warehouse

Source: SRK, 2023

Figure 12.3 SCD-031 Core Interval (Granodiorite – 1.57 g/t and 0.75 g/t Au

Source: SRK, 2023

12.2 VERIFICATION OF DATABASE

SRK randomly selected and verified over 6,000 m of drilling from 59 drill holes (approximately 10% of the data). The original laboratory data certificates, geological logs, collar and downhole deviation surveys and specific gravity (SG) logs (where available) were compared to entries in the Sonoro database, and no material errors were found.

12.3 LIMITATIONS

SRK did not have any limitations in terms of access to the Sonoro staff and information. Although the pre-Sonoro historical data are lacking documentation and QA/QC procedures do not meet current standards, SRK used all the provided data to support the mineralized grade shells and mineral resource estimate Sonoro drilling represents over 75% of the total meterage and supports the areas drilled by previous companies, especially within the Indicated Mineral Resource classification.

- Sonoro has not submitted check or umpire assays to an outside laboratory.
- SRK reviewed 10% of the database, but this does not mean that there are no errors in the remaining 90% of the data.
- Sonoro has not submitted coarse reject or pulp duplicates to allow assessment of assay precision.

12.4 OPINION ON DATA ADEQUACY

It is the opinion of the QPs responsible for the preparation of this Technical Report that the data used to support the conclusions presented herein are adequate for the purposes of the mineral resource estimation. Data that are considered suspect or do not have industry standard supporting quality control have been reviewed and the uncertainly of these data is accounted for in the mineral resource classification.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

13.1 METALLURGICAL TEST PROGRAMS

Two programs of metallurgical testwork have been conducted to evaluate the responsiveness of Cerro Caliche material to heap leaching. The first metallurgical investigation was conducted by Interminera during 2019 to 2020 on surface samples from the Cuevos and Japoneses East deposit areas.

The second and more detailed test program was instigated at McClelland Laboratories Inc. (McClelland) in 2020 to 2021, to determine mineralogical characterization for the column test composites and to perform load permeability testing of the column residues of the Cerro Caliche zones. The samples for this work were selected by Sonoro to provide 52 drill core composites from the five (5) major mineralized areas of Japoneses, Cuervos, El Colorado, Cabeza Banca and Buena Suerte, with both stockwork and vein breccia material types.

The gold mineralization is typical of low sulphidation epithermal precious metal hydrothermal systems. The mineralization is uniform and silicified, ranging from moderate silica addition to intense pervasive silica flooding. Mineralogical analyses on nine column leach test composites. McClelland, (2021) found that the material consisted primarily of quartz and feldspar. Mica content ranged from 3.2% to 7.7%. All other mineral phases, including sulphides, were present in minor to trace levels. Gold was observed to occur as electrum and native gold. Silver was found to occur primarily as acanthite (Ag₂S) and native silver.

The highlights and detailed results of both metallurgical programs are noted in the following sections below and referenced accordingly.

13.1.1 Interminera Metallurgical Program

The initial metallurgical program at Interminera was conducted on four composites prepared from surface samples from the Japoneses and Cuervo deposit areas, representing vein and veinlet mineralization. The scope of work completed included site sampling, associated sample preparation and assaying, particle size analysis, and cyanide column leaching testing.

Column testing was performed with 12 columns with approximately 800 kg of samples loaded in each column. Prior to loading, all material was two-stage crushed to one inch (25.4 mm) and analyzed for particle size distribution and assays.

Two sizes of columns were utilized in the testing:

- 32in. dia (0.85m) for the veinlet samples: high capacity and low grade.
- 22in. dia (0.58m) for the vein samples: low capacity and high grade.

As per standard practice, bottle roll testing was completed to determine base operating parameters for the columns.

Column testing parameters were as follows:

- Solution pH of 10.5-11.0, sodium cyanide (NaCN) addition of 0.5 gm/L (500 ppm).
- Irrigation rate of 3.4 litres per hour per square metre.
- Daily analysis of solution for gold assay, free cyanide and pH.
- Columns operated for 55-67 days plus 5 days for drain and wash cycles.
- Leached residues were screened and assayed accordingly.

13.1.1.1 Cyanide Test Column Results

Zone			Japoi	neses					Cue	rvos		
Mineralization		Veinlets			Veins			Veinlets			Veins	
Sample	A	В	С	D	E	F	J	К	L	G	Н	I
Leaching days	55	55	67	67	67	67	67	67	67	67	67	67
Au Recovery - process	31.2%	33.5%	44.7%	61.9%	67.5%	63.4%	76.4%	66.0%	71.2%	59.1%	61.9%	65.4%
Au Recovery - balance	46.8%	44.2%	31.1%	80.4%	81.5%	82.9%	83.2%	80.8%	75.4%	80.9%	84.4%	72.7%
CN – kg/t	0.42	0.51	0.43	0.88	0.79	0.90	0.65	0.67	0.72	0.96	0.87	0.88
NaOH – L/t	0.59	0.67	0.68	1.55	1.57	1.57	0.92	0.92	0.93	1.27	1.26	1.39
Sample size <1/2"		44.7%			67.5%			76.4%			65.4%	
Gold - g/t		1.261			4.506			1.395			3.311	

Table 13.1 Results of Column Cyanidation Tests

Source: Interminera (2020).

- Recoveries from the Japoneses and Cuervos veins and Cuervos veinlets ranged from 59.1% to 76.4% (solution based).
- Low recovery of approximately 36% from the Japoneses veinlets can be attributed to the particle size distribution, indicating a strong correlation between gold recovery and crush size.

13.1.1.2 Particle Size Distribution – Head Analysis

As noted, the samples were crushed to a one-inch size (25.4 mm) and screened accordingly. Head size distribution and gold content of the samples are shown in Table 13.2 to Table 13.5, indicating elevated grades of the veins and veinlets.

Screen Analysis -	Head	Certificate BV	- HMS19000305		
Corconvitatyor		our anoate by	FA Assay (a/t)	Content (a)	Content (%)
Size	Weight (kg)	%	Au	Au	Au
+1/2"	1389	42.08	1.37	1.899	45.61%
+1/4"	864.99	26.20	1.14	0.986	23.68%
+1/8"	266.01	8.06	1.11	0.295	7.09%
-1/8"	780.99	23.66	1.26	0.983	23.62%
Total =	3300.99	100	1.261	4.163	100%

Table 13.2 Japoneses Veinlets - Particle Size Distribution and Gold Content

Source: Interminera (2020).

Table 13.3 Japoneses Veins - Particle Size Distribution and Gold Content

Screen Analysis -	Head	Certificate BV	- HMS19000305		
			FA Assay (g/t)	Content (g)	Content (%)
Size	Weight (kg)	%	Au	Au	Au
+1/2"	462.00	34.53	5.798	2.679	44.43%
+1/4"	420.00	31.39	3.048	1.280	21.23%
+1/8"	111.00	8.30	3.865	0.429	7.12%
-1/8"	345.00	25.78	4.756	1.641	27.22%
Total =	1338.00	100	4.506	6.029	100%

Source: Interminera (2020).

Table 13.4 Cuervos Veins - Particle Size Distribution and Gold Content

Screen Analysis -	Head	Certificate BV	- HMS19000305		
			FA Assay (g/t)	Content (g)	Content (%)
Size	Weight (kg)	%	Au	Au	Au
+1/2"	327.00	26.08	4.00	1.307	31.48%
+1/4"	483.00	38.52	3.20	1.548	37.28%
+1/8"	96.00	7.66	2.93	0.281	6.76%
-1/8"	348.00	27.75	2.92	1.016	24.48%
Total =	1254.00	100	3.311	4.152	100%

Source: Interminera (2020).

Screen Analysis -	Head	Certificate BV	- HMS19000305		
			FA Assay (g/t)	Content (g)	Content (%)
Size	Weight (kg)	%	Au	Au	Au
+1/2"	810.00	30.79	1.24	1.004	27.34%
+1/4"	816.00	31.01	1.25	1.018	27.74%
+1/8"	219.00	8.32	1.49	0.326	8.87%
-1/8"	786.00	29.87	1.68	1.324	36.05%
Total =	2631.00	100	1.395	3.671	100%

Table 13.5 Cueros Veinlets - Particle Size Distribution and Gold Content

Source: Interminera (2020).

During the sample preparation and crushing it was noted the rock was "hard", with difficult production of ¼ inch material.

13.1.1.3 Tail Size Distribution and Gold Content

The resultant tails residue was screened and assayed for remaining gold content in each of the zones and averaged accordingly for the zone columns. The results are shown in Table 13.6 through Table 13.9.

Screen Analysis -	Tails	Certificate BV	- HMS19000597		
			FA Assay (g/t)	Content (g)	Content (%)
Size	Weight (kg)	%	Au	Au	% Au
+1/2"	312.83	43.66	0.88	0.275	19.83%
+1/4"	168.17	23.47	0.73	0.122	8.81%
+1/8"	28.67	4.00	0.58	0.017	1.19%
-1/8"	236.17	32.96	0.62	0.146	10.54%
Total =	745.83	Ley =	0.751	0.560	40%

Table 13.6 Japoneses Veinlets - Tail Sample Size Distribution and Gold Content

Source: Interminera (2020)

Table 13.7	
Japoneses Veins - Tail Sample Size Distribution and Gold Conte	nt

Screen Analysis -	Tails	Certificate BV	- HMS20000609		
			FA Assay (g/t)	Content (g)	Content (%)
Size	Weight (kg)	%	Au	Au	% Au
+1/2"	156.67	37.04	0.86	0.135	6.72%
+1/4"	22.67	5.36	0.81	0.018	0.91%
+1/8"	141.83	33.53	0.91	0.129	6.41%
-1/8"	152.87	36.14	0.73	0.112	5.57%
Total =	474.03	Ley =	0.831	0.394	20%

Source: Interminera (2020)

Table 13.8 Cuervos Veins - Tail Sample Size Distribution and Gold Content

Screen Analysis -	Tails	Certificate BV	- HMS20000609		
			FA Assay (g/t)	Content (g)	Content (%)
Size	Weight (kg)	%	Au	Au	% Au
+1/2"	112.53	27.56	0.843	0.095	6.85%
+1/4"	21.83	5.35	0.554	0.012	0.87%
+1/8"	130.67	32.00	0.585	0.076	5.52%
-1/8"	134.50	32.94	0.707	0.095	6.87%
Total =	399.53	Ley =	0.697	0.278	20%

Source: Interminera (2020)

Table 13.9
Cuervos Veinlets - Tail Sample Size Distribution and Gold Content

Average Screen A	nalysis - Tails	Certificate BV	- HMS19000597		
			FA Assay (g/t)	Content (g)	Content (%)
Size	Weight (kg)	%	Au	Au	% Au
+1/2"	169.33	23.36	0.25	0.042	3.46%
+1/4"	246.83	33.88	0.28	0.068	5.59%
+1/8"	34.83	4.78	0.66	0.023	1.86%
-1/8"	273.83	37.59	0.29	0.078	6.41%
Total =	724.83	Ley =	0.292	0.212	17%

Source: Interminera (2020)

13.1.1.4 Column Test Results

Figure 13.1 to Figure 13.4 present gold recovery over the leach cycle time for the four zones and types.

Figure 13.1 Column Leach Study on Japoneses Veinlets Samples

Source: Interminera (2020)

Figure 13.2 Column Leach Study on Japoneses Vein Samples

Source: Interminera (2020)

Figure 13.3 Column Leach Study on Cuervos Vein Samples

Source: Interminera (2020)

Figure 13.4 Column Leach Study on Cuervos Veinlets Samples

Source: Interminera (2020)

13.1.1.5 Conclusions and Recommendations from the Interminera Program

- Crushing size impacted gold liberation, as expected. Crushing at particle size P_{80} 1/2" is recommended for higher gold recovery.
- Due to rock hardness, the following comminution testing is recommended:
 - Abrasion Index test for crusher liners. (Ai+0.22)/11=lb/kWh.
 - Crushability Index test to calculate net power requirements.
- Gold content by size fraction indicates that gold liberation is proportional to crushing rate. Mineralogical testing may confirm that gold is not refractory, free and fine.
- Solution percolation through the heap is good. Solution obstructions were not observed on any of the columns.
- A low irrigation flow rate (around 3.4 litres per hour per square metre) is recommended due to the low-grade fines generated. This will allow an optimal contact time with the mineralized material.
- Crushed rock demonstrated good porosity despite its hardness.
- Low compaction rate of 2% resulted on studied mineralized materials, and this is beneficial for heap leaching operations.
- Medium and high consumption of reagents (NaCN 0.65 kg/t 0.90 kg/T) (NaOH 0.65 L/t 1.56 l/T) is due to the presence of base metal minerals, such as Fe, Mn, Mg and Zn.
- Mineralized material responded well to cyanidation and had good conditions for a heap leaching process, although additional optimization testwork would be prudent.
- Additional metallurgical testing of gold adsorption in activated carbon is recommended to cover the evaluation of gold extraction for the whole process.
- The recovery rate for vein samples (high gold grade) indicates that 80% of the extraction occurs within the first 30 days, with the remaining 20% extracted in the following 30 days.
- The recovery rate for veinlets samples (low gold grade) indicates that constant extraction continues after 60 days. Testing for 90 days is recommended to determine the total extraction.

13.1.2 McClelland Metallurgical Program

The metallurgical program conducted by McClelland was more extensive than the program conducted by Interminera and was conducted on 52 drill core composites made from 428 lineal metres of PQ drill core (10 drill holes). The drill core represented vein breccia and stockwork mineralization from five major zones, including:

- Japoneses
- Cuervos
- El Colorado
- Cabeza Banca
- Buena Suerte

The metallurgical program included both bottle roll leach tests and column leach tests, which are used to simulate metallurgical performance in a heap leach. Core was hand sampled, crushed, split, and assayed in two-meter lengths to determine gold and silver content. Any intervals over 0.15 g/t Au were analyzed using the cyanide shake procedure to determine cyanide soluble gold and silver content.

Bottle roll testing was conducted on forty-three variability composites that were prepared from drill core intervals for detailed head analysis at an 80% -1.7 mm. feed size. The purpose of the bottle roll tests was to obtain preliminary information concerning heap leach amenability and to evaluate the variability of the mineralization.

Table 13.10 and Figure 13.5 and Figure 13.6 show the summary results for the variability composite bottle rolls.

Composites, 80% - 1.7 mm feed Size												
Ore Zone/	Number	Drill		Au Rec.,	Head Grade,	Ag Rec.,	Head Grade,	NaCN Cons.,	Lime, Added			
Ore Type	Comps.	Holes		%	Au (g/t)	%	Ag(g/t)	kg/t	kg/t			
			Maximum:	89.3	2.09	57.1	21.6	0.20	5.3			
Buena Suerte	7	1	Average:	74.1	0.73	26.8	4.3	0.14	3.1			
			Minimum:	46.2	0.13	11.1	0.7	<0.10	1.1			
			Maximum:	92.3	2.46	58.1	11.7	1.98	2.8			
Cuervos	7	2	Average:	73.6	0.90	43.2	6.2	0.42	2.0			
			Minimum:	82.3	0.13	29.4	3.2	<0.10	1.0			
		1	Maximum:	85.6	0.90	29.8	4.7	0.28	3.2			
El Colorado	5		Average:	75.8	0.44	18.0	2.6	0.15	2.1			
			Minimum:	66.7	0.11	9.1	1.3	<0.10	1.3			
			Maximum:	90.0	2.21	39.2	24.7	0.27	6.0			
Japoneses	24	3	Average:	82.0	0.48	24.5	5.7	0.16	1.8			
			Minimum:	64.9	0.03	9.1	1.1	<0.10	0.7			
			Maximum:	92.3	2.09	58.1	21.6	0.22	6.0			
Stockwork	33	6	Average:	80.1	0.43	25.3	4.6	0.14	2.1			
			Minimum:	46.2	0.03	9.1	0.7	<0.10	0.7			
			Maximum:	89.7	2.46	44.4	24.7	0.28	4.2			
Vein Breccia	18	2	Average:	80.2	1.31	31.6	7.9	0.19	2.1			
			Minimum:	73.6	0.18	9.1	1.9	<0.10	1.2			
All Samples	43	7	Maximum:	92.3	2.46	58.1	24.7	1.98	6.0			
			Average:	80.4	0.59	27.2	5.2	0.19	2.1			
			Minimum:	46.2	0.03	9.1	0.7	<0.10	0.7			

Table 13.10 Variability Bottle Roll Test Results Summary

Sonoro Gold Corp.

Figure 13.5 Au Recovery - Bottle Roll Tests (Variability Composites, 80% - 1.7mm Feed Size)

Source: MLI (2021).

Figure 13.6 Au Recovery, Bottle Roll Tests (Variability Composites, 80 % -1.7 mm Feed Size)

Bottle Roll Testing and Variability Testing Summary and Conclusions:

- Variable head grades: 0.03 to 2.29 g/t Au, 5.0 g/t Ag
- Five composites greater than 10 g/t Au
- Gold cyanide solubility over 40% with average of 64.4%
- Mineralogical analysis showed predominantly quartz with lesser amount of feldspar.
- Bottle roll testing indicated that all composites were amenable to cyanide leaching with gold recovery over 65%, except in one composite.
- Variability composites contained little to no sulphide sulphur or organic carbon. No signs of refractory behaviour or preg-robbing.
- Average gold recovery of 80.4% but improved to 81.3% with elimination of the low-grade composites (0.15 g/t Au).
- Gold recoveries for four major mineralized zones averaged 74% or greater.
- Silver recoveries were low and averaged 27.2%.
- Reagent additions were generally low.
 - NaCN addition averaged 0.16 kg/t (with one exception).
 - lime addition between 1.8-2.1 kg/t.

Based on results from the bottle roll tests, nine larger composites were prepared for column leach testing. Column leach tests were conducted on each of the nine composites at crush sizes of 100% -50 mm and 80% -12.5 mm, to determine heap leach amenability and feed crush size sensitivity. Table 13.11 provides summary results from these column leach tests.

Table 13.11 Column Test Drill Core Composites Results

									Reagent	Req.,
		Leach/Rinse	Au		Au(g/t) Mi	neral Zone			kg/t Miner	al Zone
Feed	Test	Time,	Rec.,			Calc'd.	Avg.		NaCN	Lime
Size	Туре	Days	%	Ext'd.	Tail	Head	Head		Cons.	Added
<u>Comp. 044, \</u>	<u>/ein Brec</u>	<u>cia Mineralizati</u>	<u>on Type, El</u>	Col./Jap.	<u>Mineral Zo</u>	one, Drill H	ole SCD-00	<u>)4 /</u>	008, Only Vn	<u>Comp.</u>
100%-50mm	CLT	99	57.6	0.57	0.42	0.99	0.77		0.95	2.3
80%-12.5mm	CLT	89	78.4	0.58	0.16	0.74	0.77		0.80	2.3
80%-1.7mm	BRT	4	80.6	0.58	0.14	0.72	0.77		0.13	2.1
<u>Co</u>	<u> Prill Hole S</u>	<u>SCD</u>	<u>-006 / 007</u>							
100%-50mm	CLT	98	55.8	0.29	0.23	0.52	0.45		0.41	2.4
80%-12.5mm	CLT	90	72.3	0.34	0.13	0.47	0.45		0.53	2.4
80%-1.7mm	BRT	4	85.7	0.36	0.06	0.42	0.45		0.61	1.9
	<u>Comp. 0</u>	<u>46, Mixed Miner</u>	alization Ty	<u>ype, Cuerv</u>	os Minera	<u>l Zone, Dri</u>	ll Hole SCI	<u>)-00</u>	<u>)6 / 007</u>	
100%-50mm	CLT	98	67.3	0.72	0.35	1.07	1.30		0.56	1.9
80%-12.5mm	CLT	90	61.3	1.03	0.65	1.68	1.30		0.77	1.9
80%-1.7mm	BRT	4	83.6	1.07	0.21	1.28	1.30		1.01	1.2
<u>Comp. 047, St</u>	ockwork	<u>/Mixed Minerali</u>	zation Type	e, Cabeza E	<u> Blanca Min</u>	eral Zone,	Drill Hole	SCI	<u>D-009, Only Cl</u>	<u>3 Comp.</u>
100%-50mm	CLT	91	66.1	0.41	0.21	0.62	0.64		0.34	2.1
80%-12.5mm	CLT	97	78.6	0.44	0.12	0.56	0.64		0.44	2.1
80%-1.7mm	BRT	4	84.1	0.53	0.10	0.63	0.64		<0.10	1.6
<u> </u>	<u>Comp. 04</u>	<u>8, Stockwork M</u>	ineralizatio	on Type, Ja	poneses N	<u> Mineral Zor</u>	<u>ne, Drill Ho</u>	ole S	<u>SCD-012</u>	
100%-50mm	CLT	110	81.5	0.22	0.05	0.27	0.24		0.35	1.8
80%-12.5mm	CLT	97	83.3	0.20	0.04	0.24	0.24		0.40	1.8
80%-12.5mm	CLT	97	77.8	0.21	0.06	0.27	0.24		0.46	1.8
80%-1.7mm	BRT	4	78.3	0.18	0.05	0.23	0.24		0.14	1.6
Com	<u>ip. 049, S</u>	tockwork/Mixe	<u>d Mineraliz</u>	ation Type	, Japones	<u>es Mineral</u>	Zone, Dril	l Ho	ole SCD-013	
100%-50mm	CLT	103	69.2	0.27	0.12	0.39	0.41		0.32	1.3
80%-12.5mm	CLT	89	71.4	0.30	0.12	0.42	0.41		0.42	1.3
80%-1.7mm	BRT	4	85.7	0.36	0.06	0.42	0.41		0.13	1.2
Comp	<u>o. 050, St</u>	<u>ockwork Minera</u>	alization Ty	pe, Japon	<u>eses Miner</u>	ral Zone, D	rill Hole S	CD-	<u>014, Shallow</u>	
100%-50mm	CLT	89	53.6	0.15	0.13	0.28	0.32		0.47	1.7
80%-12.5mm	CLT	89	71.0	0.22	0.09	0.31	0.32		0.52	1.7
80%-1.7mm	BRT	4	76.9	0.30	0.09	0.39	0.32		0.16	1.7
<u>Con</u>	<u>1p. 051, S</u>	Stockwork Mine	ralization T	ype, Japo	neses Min	eral Zone,	Drill Hole	SCE	<u>)-014, Deep</u>	
100%-50mm	CLT	96	71.4	0.15	0.06	0.21	0.21		0.30	1.4
80%-12.5mm	CLT	95	78.9	0.15	0.04	0.19	0.21		0.36	1.4
80%-1.7mm	BRT	4	85.7	0.18	0.03	0.21	0.21		0.15	1.4
<u>Comp. 052, S</u>	tockwor	<u>k Mineralization</u>	n Type, Bue	nas Suerte	Mineral Z	one, Drill I	Hole SCD-C)22,	Only Buenas	<u>Suerte</u>
1000/ 50	61 T	00	70.4	Comp	<u>).</u>	0.67	0.70		0.74	
100%-50mm	CLI	98	/0.1	0.47	0.20	0.67	0.76		0.74	3.1
80%-12.5mm	CLI	90	(1.1	0.54	0.22	0.76	0.76		0.64	3.1
80%-1.7mm	BRT	4	74.7	0.62	0.21	0.83	0.76		0.12	3.3

Column Leach Testing Summary and Conclusions:

- All nine composites were amenable to simulated heap leach cyanide treatment and contained little to no sulphide sulphur or organic carbon. No signs of refractory behaviour or preg-robbing.
- Gold recoveries obtained at the -50 mm (coarse) feed size ranged from 53.6% 81.5% with an average of 65.8% after 100 days of leaching and rinsing.
- Gold recoveries obtained at the 80% -12.5 mm (fine) feed size ranged from 61.3% to 80.6%, with an average of 73.7% after 90 days of leaching and rinsing.
- The finer crush size improved average gold recovery by 8%
- Gold recovery rates (profiles) were moderate and very slow when leaching terminated; longer leaching cycles should improve gold recovery albeit incrementally.
- Cyanide consumption was less than 0.5 kg/t for the -50 mm feed while consumption for 12.5 mm feed ranged from 0.36 kg/t to 0.80 kg/t and averaged 0.55 kg/t.
- Silver recovery was low and averaged 27 %.
- Hydraulic conductivity tests were conducted on the 12.5 mm feed size leached residue to determine mineralization permeability under simulated heap stacks of up to 100 m. Samples tested show adequate permeability for heap leaching to 100-metre height, without agglomeration pre-treatment. One exception was the Buena Suerte composite which had elevated clay content and would be limited to 40 m. stack height without blending.

13.1.2.1 Head Analysis Results and Cyanide Solubility Results

Head analyses and solubility results for the column composites are provided in Table 13.12 and Table 13.13. Table 13.14 summarizes the results of comminution testing conducted to determine the crusher work index.

Composite	Au (g/t) Min	eralization	CN Sol	CN Sol Ag (g/t) Mineralization			
composite	Assay	CN Sol	%, Au	Assay	CN Sol	%, Ag	
4628-001	2.56	1.92	75.0	24.7	19.35	78.3	
4628-002	1.25	1.00	80.0	10.1	5.94	58.8	
4628-003	0.21	0.09	42.9	6.3	3.14	49.8	
4628-004	0.38	0.23	60.5	4.5	1.75	38.9	
4628-005	0.62	0.37	59.7	2.4	0.63	26.3	
4628-006	0.24	0.10	41.7	2.5	0.72	28.8	
4628-007	0.53	0.35	66.0	10.4	7.66	73.7	
4628-008	0.13	0.03	23.1	2.9	1.86	64.1	

Table 13.12 Cyanide Solubility Variability Composites Results

Composito	Au (g/t) Min	eralization	CN Sol	Ag (g/t) Min	eralization	CN Sol
Composite	Assay	CN Sol	%, Au	Assay	CN Sol	%, Ag
4628-009	0.43	0.37	86.0	7.6	4.82	63.4
4628-010	0.49	0.37	75.5	4.8	2.66	55.4
4628-011	1.30	0.79	60.8	6.0	3.52	58.7
4628-012	1.53	1.17	76.5	4.9	2.94	60.0
4628-013	0.89	0.47	52.8	3.2	1.55	48.4
4628-014	1.05	0.79	75.2	4.8	2.56	53.3
4628-015	0.27	0.13	48.1	2.1	0.58	27.6
4628-016	0.95	0.66	69.5	1.8	0.80	44.4
4628-017	0.16	0.12	75.0	2.5	0.95	38.0
4628-018	0.14	0.06	42.9	1.1	0.34	30.9
4628-019	0.50	0.34	68.0	4.4	1.47	33.4
4628-020	0.10	0.10	100.0	2.3	0.55	23.9
4628-021	0.12	0.10	83.3	1.4	0.30	21.4
4628-022	0.26	0.19	73.1	2.1	0.59	28.1
4628-023	0.31	0.18	58.1	3.1	0.83	26.8
4628-024	0.97	0.42	43.3	5.7	1.33	23.3
4628-025	0.31	0.14	45.2	3.7	0.57	15.4
4628-026	0.16	0.19	100.0	2.9	1.57	54.1
4628-027	0.03	<0.01	100.0	1.1	0.44	40.0
4628-028	0.09	0.08	100.0	2.2	1.56	70.9
4628-029	0.35	0.19	54.3	8.0	3.26	40.8
4628-030	0.29	0.20	69.0	4.4	2.00	45.5
4628-031	0.50	0.26	52.0	7.7	4.64	60.3
4628-032	0.12	0.09	75.0	3.7	1.71	46.2
4628-033	0.16	0.11	68.8	3.9	2.14	54.9
4628-034	0.16	0.14	87.5	3.5	2.20	62.9
4628-035	1.69	1.14	67.5	13.3	9.72	73.1
4628-036	0.31	0.26	83.9	7.0	4.24	60.6

Composite	Au(g/t) Mi	neralization	CN Sol.	Ag(g/t) Mi	neralization	CN Sol.
composite	Assay	CN Sol.	%, Au	Assay	CN Sol.	%, Ag
4628-044	0.78	0.76	97.4	5.5	4.46	81.1
4628-045	0.26	0.27	100.0	3.8	2.94	77.4
4628-046	1.59	0.78	49.1	9.7	7.28	75.1
4628-047	0.72	0.63	87.5	25.8	24.39	94.5
4628-048	0.30	0.26	86.7	2.7	1.27	47.0
4628-049	0.40	0.36	90.0	6.2	3.68	59.4
4628-050	0.25	0.26	100.0	2.9	2.67	92.1
4628-051	0.25	0.23	92.0	1.6	0.70	43.8
4628-052	0.64	0.49	76.6	2.9	1.34	46.2

Table 13.13Cyanide Solubility Column Composites Results

Source: MIL (2021)

Table 13.14 Comminution Testing: Crusher Work Index & Abrasion Index

Composite	Mineralized	C	rusher Wo	rk Index	Abrasion Index			
composite	Zone	kWh/st	kWh/mt	Classification	(grams)	Classification		
COM-001	Cuervos	7.75	8.54	Very Soft	0.3603	Abrasive		
COM-002	El Colorado [*]	4.74	5.23	Very Soft	0.3670	Abrasive		
COM-003	Japoneses	5.01	5.52	Very Soft	0.6585	Very Abrasive		
COM-004	Buena Suerte	5.40	5.95	Very Soft	0.1725	Moderately Abrasive		

Source: MIL (2021)

13.1.2.2 Bottle Roll Test Procedures and Results

Direct agitated cyanidation (bottle roll) tests were conducted on the 43 variability and nine column test composites at an 80% -1.7 mm (10 mesh) feed size, to determine recoveries, rates, reagent requirements and mineralization variability. Rolling of the pulps in the bottles was conducted for 96 hours. Analysis over the time, cyanide concentrations, and pH adjustment were performed during the testing procedure.

The summary of the results for each zone are shown in Table 13.15 to Table 13.18.

Table 13.15 Buena Suerte Zone Composites Bottle Roll Tests Results

	80% - 1.7 mm Feed Size													
Composite					Au	Au (Reag Require kg Mineral	gent ements, g/t lization						
	Drill	Interva	al, m	Mineralization	Rec.,			Calc'd.	Head	NaCN	Lime			
	Hole	from	to	Туре	%	Ext'd.	Tail	Head	Assay	Cons.	Added			
4628-037	SCD-022	0	6	Stockwork	79.3	0.92	0.24	1.16	0.71	0.17	5.0			
4628-038	SCD-022	6	12	Stockwork	66.0	1.38	0.71	2.09	1.99	0.18	5.3			
4628-039	SCD-022	12	18	Stockwork	83.0	0.83	0.17	1.00	1.19	0.20	5.2			
4628-040	SCD-022	18	24	Stockwork	80.0	0.16	0.04	0.20	0.23	0.09	1.5			
4628-041	SCD-022	24	30	Stockwork	46.2	0.06	0.07	0.13	0.08	0.09	1.7			
4628-042	SCD-022	30	36	Stockwork	89.3	0.25	0.03	0.28	0.33	<0.10	1.8			
4628-043	SCD-022	36	55	Stockwork	75.0	0.18	0.06	0.24	0.26	<0.10	1.1			

Source: MLI (2021)

80% - 1.7 mm Feed Size													
					Au	Au	(g/t) Mi	tion	Rea Require kg Mineral	gent ments, /t ization			
Composito	Drill	Interv	val, m	Mineralization	Rec.,			Calc'd.	Head	NaCN	Lime		
composite	Hole	from	to	Туре	%	Ext'd.	Tail	Head	Assay	Cons.	Added		
4628-007	SCD-006	0	6	Stockwork	88.9	0.48	0.06	0.54	0.53	<0.10	2.8		
4628-008	SCD-006	6	12	Stockwork	92.3	0.12	0.01	0.13	0.13	0.09	2.8		
4628-009	SCD-006	12	18	Blended [*]	84.0	0.42	0.08	0.50	0.44	0.24	2.8		
4628-010	SCD-006	18	24	Blended [*]	82.5	0.47	0.10	0.57	0.54	0.07	1.9		
4628-011	SCD-007	35.5	41.5	Vn Breccia	84.2	1.17	0.22	1.39	1.43	0.19	1.7		
4628-012	SCD-007	41.5	47.5	Vn Breccia	73.6	1.81	0.65	2.46	1.73	0.22	1.2		
4628-013	SCD-007	47.5	53.5	Blended [*]	84.5	0.60	0.11	0.71	0.77	1.98	1.0		

Table 13.16Cuervos Zone Composites Bottle Roll Tests Results

Table 13.17
El Colorado Zone Composites Bottle Roll Tests Results

	80% - 1.7 mm Feed Size												
					Au	Au	Au(g/t) Mineralization				gent ements, g/t lization		
Composito	Drill	Interv	val, m	Mineralization	Rec.,			Calc'd	Head	NaCN	Lime		
composite	Hole	from	to	Туре	%	Ext'd.	Tail	Head	Assay	Cons.	Added		
4628-014	SCD-008	36.35	98.45	* Vn Breccia	85.6	0.77	0.13	0.90	0.95	0.28	1.3		
4628-015	SCD-008	98.45	104.45	Vn Breccia	77.8	0.14	0.04	0.18	0.21	0.13	2.4		
4628-016	SCD-008	104.45	110.45	* Vn Breccia	76.5	0.65	0.20	0.85	0.79	0.09	1.7		
4628-017	SCD-008	81.5	87.5	Stockwork	66.7	0.12	0.06	0.18	0.16	<0.10	1.8		
4628-018	SCD-008	87.5	93.5	Stockwork	72.7	0.08	0.03	0.11	0.12	0.13	3.2		

Source: MLI (2021)

13.1.2.3 Column Percolation Leach Test Procedures and Results

Column percolation leach tests were conducted on the nine composites at the two crush sizes of 100% -50 mm and 80% -12.5 mm. No pre-treatment agglomeration of the mineralization was required.

Other procedures were as follows:

- Lime mixed with mineralization prior to loading at a rate of 1.3 to 3.1 kg/t
- 3 m high columns used in testing to minimize particle segregation and compaction.
- -50 mm feed leached in 30, 25 or 20 cm. diameter columns.
- 80% -12.5 mm leached in 15 or 10 cm. diameter columns.
- Cyanide application rate of 6 L/h/sq.mt. (0.0025 usgpm/sq.ft) with cyanide at 0.50 g/L.
- Solution analysis, cyanide concentrations, and pH adjustment done during testing procedure.
- Drain down tests conducted after rinsing.
- At completion of leaching, rinsing, and draining, residue was removed and sampled for moisture content and further dried for tails screen analysis.

The summary results for each zone are shown in Table 13.18 to Table 13.21 and in Figure 13.7 to Figure 13.9.

Composite:	4628	-044	462	8-045	4628-046		
Drill Hole:	SCD-00	04/008	SCD-0	06/007	SCD-00	06/007	
Mineralize Zone:	El Col	./Jap.	Cue	ervos	Cuervos		
Mineralization Type:	Vein B	reccia	Stoc	kwork	Mixed		
Food Size	100%-	80%-	100%-	80%-	100%-	80%-	
reeu size	50mm	12.5mm	50mm	12.5mm	50mm	12.5mm	
Metallurgical Results	CL-1	CL-10	CL-2	CL-11	CL-3	CL-12	
Extraction: % of total							
1st Effluent	4.8		7.1	22.4	8.3	16.9	
in 5 days	20.6	11.8 ²⁾	19.5	32.0	26.5	29.2	
in 10 days	33.4	49.2	30.6	49.7	39.2	45.4	
in 15 days	39.4	57.4	36.0	55.2	45.3	49.9	
in 20 days	42.9	61.8	39.5	58.9	49.3	52.4	
in 30 days	47.1	66.9	43.9	64.0	54.8	55.8	
in 40 days	50.4	70.2	47.2	67.0	58.6	57.8	
in 50 days	52.3	72.7	49.6	69.2	61.3	59.0	
in 60 days	53.5	74.5	51.7	69.6	63.6	59.6	
in 70 days	54.7	75.8	53.1	69.6	65.2	59.8	
in 80 days	56.0	77.2	53.2	71.2	66.4	60.3	
in 90 days	56.8		54.5	72.3	67.2	61.3	
End of Leach/Rinse	57.6	78.4	55.8	72.3	67.3	61.3	
Extracted, gAu/mt Mineralized Material	0.57	0.58	0.29	0.34	0.72	1.03	
Tail Screen, gAu/mt	0.42	0.16	0.23	0.13	0.35	0.65	
Calculated Head, gAu/mt Mineralized Material	0.99	0.74	0.52	0.47	1.07	1.68	
Average Head, gAu/mt Mineralization	0.77	0.77	0.45	0.45	1.30	1.30	
Ag Extraction, % of Total	15.6	20.7	21.7	31.5	18.5	24.3	
Extracted, gAg/mt Mineralized Material	1.0	1.2	1.5	1.7	1.7	2.8	
Tail Screen, gAg/mt	5.4	4.6	5.4	3.7	7.5	8.7	
Calculated Head, gAg/mt Mineralized Material	6.4	5.8	6.9	5.4	9.2	11.5	
Average Head, gAg/mt Mineralized Material	6.3	6.3	5.2	5.2	10.9	10.9	
NaCN Consumed, kg/mt Mineralized Material	0.95	0.80	0.41	0.53	0.56	0.77	
Lime Added, kg/mt Mineralized Material	2.3	2.3	2.4	2.4	1.9	1.9	
Final Solution pH	10.0	10.3	10.7	10.3	10.6	10.1	
pH After Rinse	10.1	10.6	10.8	10.6	10.5	10.3	
Leach/Rinse Cycle, Days	99	89	98	90	98	90	

Table 13.18 Drill Core Composites Column Leach Tests Results

Table 13.19 Drill Core Composites Column Leach Tests Results

Composite:	4628-047		4628-048			4628-049	
Drill Hole:	SCD-009/010		SCD-012			SCD-013	
Mineralize Zone:	Cabeza Blanca		Japoneses			Japoneses	
Mineralization Type:	Stockwork/ Mixed		S	Stockwork		Stockwork/ Mixed	
Feed Size	100%- 50mm	100%- 80%- 100%- 80%- 50mm 12.5mm 50mm 12.5mm		100%- 50mm	80%- 12.5mm		
Metallurgical Results	CL-4	CL-13	CL-5	CL-14	CL-15	CL-6	CL-16
Extraction: % of total							
1st Effluent	6.7		11.2			15.5	
in 5 days	20.9	9.7 ²⁾	26.8	9.9 ²⁾	23.2 ³⁾	27.5	16.7 ²⁾
in 10 days	38.0	55.1	44.5	53.1	51.1	39.1	47.3
in 15 days	45.1	62.6	52.1	62.3	59.9	45.0	54.1
in 20 days	49.5	66.6	57.2	67.7	64.6	49.0	58.1
in 30 days	55.4	71.1	63.7	74.3	69.8	53.9	63.3
in 40 days	59.0	73.3	68.4	77.9	72.6	57.8	66.3
in 50 days	61.5	74.8	71.7	79.6	74.2	61.0	68.5
in 60 days	63.3	74.8	74.0	79.6	74.2	63.6	68.5
in 70 days	64.1	76.5	74.2	82.2	76.7	65.7	70.7
in 80 days	64.1	76.0	77.4	82.2	76.7	65.7	70.7
in 90 days	66.1	77.9	77.9	83.3	77.8	67.7	
in 100 days			79.6			68.8	
End of Leach/Rinse	66.1	78.6	81.5	83.3	77.8	69.2	71.4
Extracted, gAu/mt Mineralized Material	0.41	0.44	0.22	0.20	0.21	0.27	0.30
Tail Screen, gAu/mt	0.21	0.12	0.05	0.04	0.06	0.12	0.12
Calculated Head, gAu/mt Mineralization	0.62	0.56	0.27	0.24	0.27	0.39	0.42
Average Head, gAu/mt Mineralized Material	0.64	0.64	0.24	0.24	0.24	0.41	0.41
Ag Extraction, % of Total	7.0	25.0	11.1	11.1	28.6	18.8	23.9
Extracted, gAg/mt Mineralized Material	0.8	1.7	0.3	0.4	0.4	0.6	1.1
Tail Screen, gAg/mt	10.6	5.1	2.4	3.2	1.0	2.6	3.5
Calculated Head, gAg/mt Mineralized Material	11.4	6.8	2.7	3.6	1.4	3.2	4.6
Average Head, gAg/mt Mineralized Material	13.2	13.2	2.9	2.9	2.9	5.3	5.3
NaCN Consumed, kg/mt Mineralized Material	0.34	0.44	0.35	0.40	0.46	0.32	0.42
Lime Added, kg/mt Mineralized Material	2.1	2.1	13.2	1.8	1.8	1.3	1.3
Final Solution pH	10.8	11.1	11.0	10.8	10.8	10.6	11.2
pH After Rinse	10.5	11.1	11.2	11.2	11.0	11.0	10.9
Leach/Rinse Cycle, Days	91	96	110	96	96	103	89

Table 13.20 Drill Core Composites Column Leach Tests Results

Composite:	4628-050		4628-051		4628-052	
Drill Hole:	SCD-014		SCD-014		SCD-022	
Mineralize Zone:	Japoneses		Japoneses		Buena Suerte	
Mineralization Type:	Stockwork		Stockwork		Stockwork	
	100%-	80%-	100%-	80%-	100%-	80%-
Feed Size	50mm	12.5mm	50mm	12.5mm	50mm	12.5mm
Metallurgical Results	CL-7	CL-17	CL-8	CL-18	CL-9	CL-19
Extraction: % of total						
1st Effluent	6.5		15.6		7.0	
in 5 days	13.1	11.2 ²⁾	27.8	25.3 ²⁾	24.4	8.5 ²⁾
in 10 days	22.1	44.1	39.9	50.0	40.5	44.0
in 15 days	28.6	50.9	46.3	59.5	48.0	52.9
in 20 days	33.8	55.0	50.9	64.4	52.4	58.0
in 30 days	40.2	59.5	57.7	70.5	58.8	63.7
in 40 days	44.7	62.9	62.4	74.3	63.4	66.8
in 50 days	48.4	66.0	65.2	76.3	66.4	68.9
in 60 days	49.9	66.7	65.2	76.3	68.1	70.1
in 70 days	49.9	67.9	69.4	78.9	68.5	70.2
in 80 days	52.7	68.7	69.4	78.9	68.5	70.5
in 90 days			71.4	78.9	69.7	71.1
End of Leach/Rinse	53.6	71.0	71.4	78.9	70.1	71.1
Extracted, gAu/mt Mineralized Material	0.15	0.22	0.15	0.15	0.47	0.54
Tail Screen, gAu/mt	0.13	0.09	0.06	0.04	0.20	0.22
Calculated Head, gAu/mt Mineralized Material	0.28	0.31	0.21	0.19	0.67	0.76
Average Head, gAu/mt Mineralized Material	0.32	0.32	0.21	0.21	0.76	0.76
Ag Extraction, % of Total	21.4	31.3	5.6	16.7	22.6	42.9
Extracted, gAg/mt Mineralized Material	0.3	0.5	0.1	0.2	0.7	0.9
Tail Screen, gAg/mt	1.1	1.1	1.7	1.0	2.4	1.2
Calculated Head, gAg/mt Mineralized Material	1.4	1.6	1.8	1.2	3.1	2.1
Average Head, gAg/mt Mineralized Material	2.7	2.7	1.6	1.6	3.5	3.5
NaCN Consumed, kg/mt Mineralization	0.47	0.52	0.30	0.36	0.74	0.64
Lime Added, kg/mt Mineralized Material	1.7	1.7	1.4	1.4	3.1	3.1
Final Solution pH	9.9	10.6	9.9	10.9	10.0	10.2
pH After Rinse	10.1	10.9	10.1	9.9	8.8	10.0
Leach/Rinse Cycle, Days	89	89	96	95	98	90

Figure 13.7 Gold Leach Rate Profiles, Column Leach Tests, Drill Core Composites

Source: MLI (2021).

Figure 13.8 Gold Leach Rate Profiles, Column Leach Tests, Drill Core Composites

Figure 13.9 Gold Leach Rate Profiles, Column Leach Tests, Drill Core Composites

Source: MLI (2021).

Table 13.21						
Major Summary of Cerro Caliche Test Results						

Item	Unit	Value	Source
Gold Extraction	%	73.6	MLI-4628
Silver Extraction	%	26.7	MLI-4628
Crush Size – Option 1	mm	100 %-50mm	MLI-4628
Crush Size – Option 2	mm	80% -12.5 mm	MLI-4628
Lime Consumption, leaching	Kg/t	1.13	MLI-4628
NaCN consumption	Kg/t	0.59	MLI-4628
Cyanide Leach Cycle Times	Time, Days	90-100	MLI-4628

Source: D.E.N.M. (2021)

The drilling and sampling by Sonoro and metallurgical testing by McClelland conducted for the Cerro Caliche Heap Leach Project are considered sufficiently representative and complete to support this PEA. The process design criteria shown in Table 17.1 (at the reduced rate in Years one and two and at an increased rate in Years three through nine) are reasonable and appropriate for this study's process design and for the analysis of Project economics.

14.0 MINERAL RESOURCE ESTIMATES

The mineral resource estimate discussed herein has been prepared for the Cerro Caliche deposit, in accordance with the requirements of National Instrument (NI) 43-101. The Project is classified as a silver and gold, low to intermediate sulphidation, epithermal deposit, for which drilling has confirmed the presence of the mineralization at various locations over the strike length of more than two km and over a down-dip extension approaching 200 m. The width of the mineralization is variable.

A total of 498 RC and diamond drill core holes have been drilled at the Project, for 55,357.70 m, inclusive of historical holes. Based on review and validation completed by SRK, the mineral resource models prepared by SRK has incorporated all validated assayed drill data. The mineral resource estimate was completed by Douglas Reid, P. Eng. who is acting as the QP for mineral resources. The effective date of the mineral resource statement is January 26, 2023.

This section of the report describes the resource estimation methodology and summarizes the key assumptions considered by SRK. In the opinion of SRK, the resource estimate reported herein is a reasonable representation of the mineral resources found in the Cerro Caliche Project at the current level of drilling and sampling. The mineral resources have been estimated in conformity with the Canadian Institute of Mining, Metallurgy, and Petroleum (CIM) "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" (November, 2019) and are reported in accordance with NI 43 101 disclosure guidelines. Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the mineral resources will be converted into mineral reserves.

The database used to develop the geological model and mineral resource estimates for the Project have been reviewed by SRK. SRK is of the opinion that the current drilling information is sufficiently reliable to interpret the geology and mineralization controls of the deposit and that the assay data are sufficiently reliable to support the estimation and classification of mineral resources.

Seequent Leapfrog[®] Geo software was used to construct the geological model and for mineral resource estimation. Figure 14.1 provides a perspective view of the drill holes and the mineralized domains in which the mineral resources were estimated.

Figure 14.1
Perspective View Showing Drill Holes and Mineralized Domains

Source: SRK, 2023

14.1 DRILL HOLE DATABASE

The drill hole database supporting the mineral resources is comprised of 498 holes (RC and core), totalling 55,357.70 m of drilling and has an effective date of 4 January, 2023. No drilling has been conducted subsequent to the effective date.

There are 18 historical core holes (3,038 m) and 101 historical RC holes (9,970 m) utilized in the geological and resource block models. Between 2018 and 2022, Sonoro completed 48 core holes (6,015 m) and 331 RC holes (36,335 m). The focus of these holes was verification of historical drill holes, to test the preliminary geological model, to do infill drilling on portions of the mineralization and to extend mineralization along strike and down-dip.

RC drilling has been the predominantly used to explore the Project, at various orientations to favourably intersect the mineralization. SRK has reviewed the drilling and logging practices but was not able to observe active drilling. Overall, SRK considers the drilling and sampling protocols to be generally acceptable and in accordance with good industry practices. Where practices were noted which introduce uncertainty in geological interpretation or analytical quality, these have been considered during resource classification.

14.2 GRADE SHELLS

Due to the nature of the mineralization interpretated as a structurally controlled low-sulphidation epithermal Au-Ag model, a robust structural model was constructed using Seequent Leapfrog[®] Geo software. The geological model has integrated multiple geological sources, including detailed surface

mapping and down hole drill data, collected by Sonoro and previous property owners. Structural orientations and cross-cutting relationships were modeled to reflect field observations made by Sonoro geologists. This includes two NE-SW post-mineralization extensional faults, which divide the mineral resource area into three distinct regions. Indicator grade shells were generated at the 0.10 g/t Au threshold for each region, resulting in three mineralized domains. The QP has integrated structural trends, based on the detailed structural modelling, that were utilized to capture orientation changes of mineralized material along strike and down-dip. Capturing these inflections is critical for properly modelling continuity of mineralization along mineralized trends that cannot be captured using a "best fit" search orientation. Figure 14.2 is a plan view displaying the three domains defined by the two post-mineralization faults and the corresponding indicator shells. Figure 14.3 is a cross-section through the modeled area.

Figure 14.2 Plan View Showing Drillholes and Post Mineralization Faults

Source: SRK (2023)

Sonoro Gold Corp.

Figure 14.3 Cross Section Showing Drill Holes and Post Mineralization Faults

Source: SRK (2023)

Assays were flagged by domains (grade shells) discussed in Section 14.2.1. Due to the low number of samples within the West Lower domain, it was combined with the Unknown domain. The Unknown domain represents the volume outside the grade shells and may be considered as unmineralized or of uneconomic grade, based on limited data. Table 14.1 summarizes the statistics of the samples that underpin the resource estimate.

Element	Domain	Count	Length	Mean	Minimum	Maximum	Std Dev	CV
	Overall	39502	59465.2	0.143	0.000	46.500	0.729	5.101
	WestUpper_0.1_AUgpt	7185	10123.1	0.362	0.000	46.500	1.406	3.886
	Central_0.1_AUgpt	5718	8578.4	0.300	0.000	35.000	0.751	2.499
Au_ppm	East_0.1_AUgpt	431	610.4	0.275	0.003	11.850	0.728	2.650
	WestLower_0.1_AUgpt	16	20.5	0.208	0.003	1.009	0.309	1.484
	Unknown	23129	34920.9	0.039	0.000	6.794	0.120	3.091
A	Overall	39502	59465.2	1.583	0.000	2700.000	20.071	12.683
	WestUpper_0.1_AUgpt	7185	10123.1	3.097	0.000	364.000	11.156	3.602
	Central_0.1_AUgpt	5718	8578.4	2.554	0.000	223.200	6.881	2.694
Ag_hhii	East_0.1_AUgpt	431	610.4	1.795	0.010	64.800	4.546	2.533
	WestLower_0.1_AUgpt	16	20.5	1.194	0.010	4.300	1.563	1.309
	Unknown	23129	34920.9	0.757	0.000	133.000	2.075	2.742
Element	Domain	Count	Length	Mean	Minimum	Maximum	Std Dev	CV
A	Overall	39502	59465.2	0.143	0.000	46.500	0.729	5.101
	WestUpper_0.1_AUgpt	7185	10123.1	0.362	0.000	46.500	1.406	3.886
	Central_0.1_AUgpt	5718	8578.4	0.300	0.000	35.000	0.751	2.499
Au_ppm	East_0.1_AUgpt	431	610.4	0.275	0.003	11.850	0.728	2.650
	WestLower_0.1_AUgpt	16	20.5	0.208	0.003	1.009	0.309	1.484
	Unknown	23129	34920.9	0.039	0.000	6.794	0.120	3.091
Ag_ppm	Overall	39502	59465.2	1.583	0.000	2700.000	20.071	12.683

Table 14.1Summary Statistics – Samples by Domain

Sonoro Gold Corp.

Element	Domain	Count	Length	Mean	Minimum	Maximum	Std Dev	CV
	WestUpper_0.1_AUgpt	7185	10123.1	3.097	0.000	364.000	11.156	3.602
	Central_0.1_AUgpt	5718	8578.4	2.554	0.000	223.200	6.881	2.694
	East_0.1_AUgpt	431	610.4	1.795	0.010	64.800	4.546	2.533
	WestLower_0.1_AUgpt	16	20.5	1.194	0.010	4.300	1.563	1.309
	Unknown	23129	34920.9	0.757	0.000	133.000	2.075	2.742

Source: SRK, 2023

14.3 Assay Compositing and Capping Analysis

To correspond to the block height of 6 m and the sample length of 1.5 m, SRK composited the assay data to a 6 m length, bounded by the mineralized domains described in Section 14.3. Intervals with lengths less than 3 m were added to the previous composite. A log-probability plot of the original samples lengths is shown in Figure 14.4.

Figure 14.4 Sample Lengths – Log Probability Plot

Source: SRK, 2023

14.3.1 Outliers and Capping Analysis

High grade capping is a technique used to mitigate the potential biases that a small population of highgrade sample outliers may have during grade estimation. These high-grade samples are not considered to be representative of the general sample population and are therefore capped to a level that is more representative of that population. Although subjective, grade capping is a common industry practice when performing grade estimation for deposits that have significant grade variability.

Outlier analysis for the Cerro Caliche deposit was conducted on the 6 m composites for each mineralized domain. Histograms and log probability plots were generated for each data population and used to assess appropriate grade capping thresholds. Composites were capped prior to grade estimation. Log probability plots to support the grade capping selections for the Central and West Domains are shown in Figure 14.15.

Figure 14.5 Au Capping Assessment – Log Probability Plot – Central and West Domains

Source: SRK (2023).

A summary of grade capping thresholds and the impact of capping is shown in Table 14.2. A comparison of the uncapped and capped composite summary statistics is provided in Table 14.3.

Table 14.2 Capping Statistics by Domain

Elemen t	Domai n	Cap (g/t)	# Sample s	# Cappe d	% Cappe d	Uncappe d Max	Uncappe d Mean	Cappe d Mean	Approx Metal Remove d
	West	4	2183	12	0.55%	19.61	0.35	0.31	9.7%
Au	Central	3	1700	5	0.29%	9.35	0.30	0.30	2.4%
	East	1	132	3	2.27%	2.57	0.26	0.23	9.2%
	West	40	2128	10	0.47%	161.92	3.13	2.92	6.7%
Ag	Central	25	1678	14	0.83%	71.91	2.65	2.52	4.9%
	East	6.5	132	5	3.79%	10.97	1.72	1.62	5.9%

Source: SRK (2023).

Domain	Element (g/t)	Count	Length	Mean	Minimum	Maximum	Std Dev	C۷
	Au_UNCAP	2,197	10,108.7	0.346	0.000	19.605	0.889	2.570
West	AU_CAP	2,197	10,108.7	0.312	0.000	4.000	0.471	1.506
West	Ag_UNCAP	2,197	10,108.7	3.028	0.000	161.922	7.395	2.442
	AG_CAP	2,197	10,108.7	2.825	0.000	40.000	5.011	1.774
	Au_UNCAP	1,772	8,578.4	0.292	0.000	9.353	0.445	1.522
Control	AU_CAP	1,772	8,578.4	0.285	0.000	3.000	0.356	1.251
Central	Ag_UNCAP	1,772	8,578.4	2.508	0.000	71.905	4.835	1.928
	AG_CAP	1,772	8,578.4	2.386	0.000	25.000	3.778	1.584
	Au_UNCAP	132	610.4	0.259	0.017	2.571	0.338	1.307
Fact	AU_CAP	132	610.4	0.235	0.017	1.000	0.228	0.971
EdSL	Ag_UNCAP	132	610.4	1.718	0.010	10.972	2.128	1.239
	AG_CAP	132	610.4	1.617	0.010	6.500	1.793	1.109
	Au_UNCAP	6,607	3,4941.4	0.045	0.000	10.554	0.114	2.535
Unknown	AU_CAP	6,607	3,4941.4	0.044	0.000	1.000	0.072	1.653
UTIKHOWH	Ag_UNCAP	6,607	3,4941.4	0.790	0.000	28.276	1.544	1.955
	AG_CAP	6,607	3,4941.4	0.765	0.000	11.000	1.271	1.662

Table 14.3 Summary Statistics – 6 m Uncapped and Capped Composites by Domain

Source: SRK (2023).

SRK created logarithmic scatter plots comparing AUCAP with AGCAP for the Central and West domains. These are shown in Figure 14.6. The linear trend for higher grade composites (above 0.1 g/t Ag) suggests that Au and Ag are related and likely deposited by the same mineralizing event.

Figure 14.6 Scatter Plots – Ag vs. Au – Central and West Domains

Source: SRK (2023).

14.4 DENSITY

Density is a key factor in any resource estimate. SRK analyzed Sonoro's density data (1,007 samples) by lithology grouped by mineralized domains and the unmineralized (unknown) domain. Outlier high or low values were excluded and the mean value for each lithology was assigned to the resource model. SRK noted that some lithologies had few density data and recommends that Sonoro collect additional measurements to support future estimates. These are highlighted in yellow or orange.

A breakdown of the average density per domain is shown in Table 14.4.

Mineralized	Lithology	Samples	Mean Density (g/cm³)	Minimum (g/cm³)	Maximum (g/cm³)	Standard deviation	CV
All	All	979	2.56	2.02	2.96	0.139	0.054
	All	616	2.59	2.03	2.96	0.135	0.052
	AND	89	2.67	2.30	2.94	0.100	0.038
	GND	118	2.65	2.29	2.96	0.124	0.047
Unmineralized	ITV	184	2.56	2.03	2.78	0.134	0.052
Unmineralized	MS	2	2.30	2.16	2.44	0.142	0.061
	PQP	49	2.59	2.35	2.77	0.096	0.037
	RHY	71	2.44	2.21	2.67	0.098	0.040
	RHY_Porph	2	2.55	2.49	2.62	0.065	0.025
	SS	101	2.60	2.22	2.94	0.105	0.040
	All	216	2.53	2.15	2.85	0.123	0.049
	AND	21	2.62	2.41	2.76	0.100	0.038
	GND	43	2.55	2.21	2.85	0.130	0.051
Mineralized	ITV	45	2.53	2.16	2.82	0.127	0.050
	PQP	9	2.61	2.56	2.69	0.037	0.014
	RHY	70	2.48	2.15	2.63	0.116	0.047
	RHY_Porph	1	2.65	2.65	2.65	0.000	0.000
	SS	27	2.56	2.31	2.76	0.086	0.033

Table 14.4 Summary Statistics – Density by Lithology

Source: SRK (2023).

Yellow represents lithologies with less than 100 data, orange represents lithologies with less than 30 data

14.5 VARIOGRAM ANALYSIS AND MODELLING

Grade continuity analysis of gold mineralization was conducted using capped composites for each mineralized domain. Variograms were modeled for both Au and Ag. Variogram analysis was conducted using Seequent's Leapfrog EdgeTM software. Modeled Au variograms are shown in Figure 14.7 through Figure 14.9Figure 14.9. Note that the East Domain variogram is based on relatively few composites. A summary of the variogram parameters used for grade interpolation is provided in Table 14.5.

Variograms have been modeled using correlograms. Typical variogram parameters provided nugget variances in the order of 30% to 50% of the sill, and ranges of up to 100 m to 150 m, depending on the element (Au or Ag) and orientation. Additional infill or closer spaced sampling may increase confidence and robustness of the variograms.

Figure 14.7 West Upper Domain Variogram – 6 m Capped Au

Figure 14.8 Central Domain Variogram – 6 m Capped Au

Source: SRK, 202

Figure 14.9 East Domain Variogram – 6 m Capped Au

Source: SRK, 2023

General		Direction	1	Model			Normalized						Struc	ture 2					
Variogram Name	Dip	Dip Azimuth	Pitch	Space	Variance	Nugget	Nugget	Sill	Normalized Sill	Structure	Major	Semi-Major	Minor	Sill	Normalized Sill	Structure	Major	Semi-Major	Minor
AG_CAP:																			
Central_0.1_AUgpt	70	65	0	Data	12.381	4.333	0.35	5.695	0.46	Spherical	35	44	10	2.352	0.19	Spherical	150	110	20
AG_CAP:																			
East_0.1_AUgpt	70	65	0	Data	2.836	1.418	0.50	1.276	0.45	Spherical	33	48	10	0.142	0.05	Spherical	73	73	20
AG_CAP:																			
WestUpper_0.1_AUgpt	70	65	0	Data	20.907	8.363	0.40	8.572	0.41	Spherical	38	36	19	3.972	0.19	Spherical	150	95	35
AU_CAP:																			
Central_0.1_AUgpt 6m	70	65	0	Data	0.114	0.051	0.45	0.048	0.42	Spherical	39	45	13	0.015	0.13	Spherical	100	111	27
AU_CAP:																			
East_0.1_AUgpt 6m	70	65	0	Data	0.046	0.014	0.30	0.018	0.39	Spherical	25	20	5	0.014	0.31	Spherical	55	30	15
AU_CAP:																			
WestUpper_0.1_AUgpt 6m	70	65	0	Data	0.192	0.096	0.50	0.075	0.39	Spherical	45	26	15	0.021	0.11	Spherical	80	60	32

171

Table 14.5 Summary of Variogram Parameters

Source: SRK, 2023

14.6 BLOCK MODEL

A block model was generated for the Project in Seequent Leapfrog Geo with the block model configuration details summarized in Table 14.6. All block models were generated using a parent block size of 5 m by 5 m by 6 m. No sub-blocking was incorporated. The block height corresponds to the anticipated bench height of 6 m.

	X (m)	Y (m)	Z (m)				
Origin	536176.3	3363627.8	1760				
Parent Block Size	5	5	6				
Rotation		337					
Block Model Extents	2720.0	3315.0	738.0				
Source: SRK, 2023							

Table 14.6 Block Model Construction

14.7 ESTIMATION METHODOLOGY

Grades have been interpolated for Au (g/t) and Ag (g/t) using a three-pass approach within Leapfrog Edge, using the Ordinary Kriging (OK) estimation method within mineralized hard-boundary domains and a single pass inverse distance weighting squared (ID²) estimation outside the mineralized domains. A discretization grid of 5 x 5 x 1 has been used.

Grade estimation for each domain was conducted using multiple passes, with successively expanding search criteria in each subsequent pass. Selection of the parameters has been based on the QP's experience of this style of deposit, informed by the variogram ranges and by visual inspection of results. The estimation parameters should be re-evaluated in future studies, as additional sampling is completed.

The orientation of the search ellipses and the variograms are based on the structural controls on mineralization described in Section 14.2 and follow the local orientation of the mineralized structures which were aligned along features within the mineralized domains where possible. Locally varying anisotropy (LVA) models were used for grade estimation, to align search orientations more accurately with the geometry of the mineralized domains.

A summary of the estimation parameters used for grade interpolation at Cerro Caliche is provided in Table 14.7Table 14.7.

	Ge	neral		Ellipsoid Ra	nges (m)			N	umber of <u>Sa</u> i	mples
Domain	Interpolant	Numeric Values	Pass	Maximum	Intermediate	Minimum	Variable Orientation	Minimum	Maximum	Max Samples per Hole
			1	30	30	10	Variable Orientation	2	4	2
		AU_CAP	2	75	75	25	Variable Orientation	2	4	1
Control	OK		3	150	150	45	Variable Orientation	1	4	1
Central	UN		1	60	60	20	Variable Orientation	2	4	1
		AG_CAP	2	120	120	40	Variable Orientation	2	4	1
			3	240	240	75	Variable Orientation	1	4	1
			1	35	50	15	Variable Orientation	2	4	1
		AU_CAP	2	70	100	30	Variable Orientation	2	4	1
Fast	OK		3	105	150	45	Variable Orientation	1	4	1
East	UN		1	35	50	15	Variable Orientation	2	4	1
		AG_CAP	2	70	100	30	Variable Orientation	2	4	1
			3	140	200	60	Variable Orientation	1	4	1
			1	30	55	15	Variable Orientation	2	4	1
		AU_CAP	2	60	110	30	Variable Orientation	2	4	1
Maatulaaa	OK		3	90	175	45	Variable Orientation	1	4	1
west opper	UN		1	30	55	15	Variable Orientation	2	4	1
		AG_CAP	2	60	110	30	Variable Orientation	2	4	1
			3	90	175	45	Variable Orientation	1	4	1
	General	E	llipsoid Ranges Ellip			soid Directi	ons	Number of Samples		
		Numeric							Max S	amples

173

 Table 14.7

 Summary of Estimation Parameters Used Per Domain and Interpolant

General				Ellipsoid Ranges				llipsoid Directi	ons	Number of Samples		
Domain	Interpolant	Numeric Values	Pass	Maximum	Intermediate	Minimum	Dip	Dip Azimuth	Pitch	Minimum	Maximum	Max Sample per Hole
مبيده مباما		AU_CAP	1	200	100	50	70	65	0	2	6	
Unknown	ID2	AG_CAP	1	200	100	50	70	65	0	2	6	

Source: SRK, 2023

1

14.8 MODEL VALIDATION

Block model validation was conducted using multiple techniques, including:

- Visual inspection of estimated block grades in comparison to composited and capped drill hole data.
- Global Bias -statistical comparison of estimated grades to a nearest neighbor (NN) estimated grades by domain.
- Local bias (swath plots) comparing OK estimated grades to ID² and NN estimates.
- Change of support correction check using a selective mining unit (SMU).

14.8.1 Visual Comparison

SRK completed visual sectional reviews of the Au and Ag OK estimates with the composited drill data. Representative cross-sections for Au are shown in Figure 14.10 through Figure 14.12.

Source: SRK, 2023 Red Boundary – Central Domain Green Boundary – West Upper Domain

Figure 14.11 OK Estimate vs. 6 m Capped Composite – Oblique Section

Source: SRK, 2023 Red Boundary – Central Domain Green Boundary – West Upper Domain

Figure 14.12 OK Estimate vs. 6 m Capped Composite – Oblique Section

Source: SRK, 2023 Red Boundary – Central Domain Green Boundary – West Upper Domain

14.8.2 Global Bias

The Au and Ag block estimates were checked for global bias by comparing the average grade (with no cut-off) from the estimated OK model with that obtained from NN estimates. The NN estimator produces a theoretically globally unbiased estimate of the average composite value when no cut-off grade is applied and is a good basis for checking the performance of the different estimation methods. SRK considers a model to be unbiased if the grade estimate is within $\pm 5\%$ (relative) of the NN grades. The biases for gold and silver, with one exception, are within $\pm 5\%$ for Indicated and Inferred blocks in the mineralized domains. The Ag bias is 10% within the Central domain Inferred blocks. In SRK's opinion this is not material to the Mineral Resource due to the minimal Ag contribution to Project economics. The results are shown in Table 14.8.

Domain	Classification	N4+	AUOK	AUNN	AGOK	AGNN	Bias	s (%)
Domain	Classification	ML	(g/t)	(g/t)	(g/t)	(g/t)	Au	Ag
Control	Indicated	25.8	0.252	0.254	2.11	2.09	-1%	1%
Central	Inferred	11.0	0.199	0.197	1.54	1.41	1%	10%
Fact	Indicated	-	-	-	-	-	-	-
EdSL	Inferred	5.5	0.218	0.227	1.27	1.30	-4%	-2%
Westlipper	Indicated	23.2	0.274	0.273	2.31	2.33	0%	-1%
west opper	Inferred	35.9	0.223	0.217	2.28	2.22	3%	3%

Table 14.8 Global Bias Summary

Source: SRK, 2023 Bias = (OK-NN)/NN Mt = million tonnes

14.8.3 Swath Plots

Checks for local biases for Au and Ag were performed within the mineralized domains by creating and analyzing local trends in the grade estimates, using swath plots as presented in Figure 14.13 through Figure 14.16.

This was done by plotting the mean values from the OK and the NN estimate in east-west, north-south and vertical swaths or increments. Because the NN model is considered spatially de-clustered, it is a better reference model than the composites to validate the OK resource model.

The mean grades within each swath are shown in the upper row of swath plots, and the block count within each swath are shown in the lower row of swath plots. Au and Ag swath plots were created for Indicated and Inferred blocks and show acceptable agreement, especially in areas supported by a large numbers of composites.

Figure 14.13 Swath Plot - Central Domain - Indicated - Au

Source: SRK, 2023.

Figure 14.14 Swath Plot - West Upper Domain - Indicated - Au

Source: SRK, 2023.

Figure 14.15 Swath Plot – Central Domain – Inferred – Au

Figure 14.16 Swath Plot - West Upper Domain - Inferred - Au

Source: SRK, 2023

Figure 14.17 Swath Plot - East Domain - Inferred - Au

Source: SRK, 2023

14.8.4 Change of Support

SRK completed change of support checks (using Herco comparisons) within Indicated blocks contained in the mineralized domains, based on a selective mining unit (SMU) size of 5 m x 5 m x 6 m. These checks showed that the smoothing of estimated grades and contained metal for Au were acceptable near the expected cut-off grades, with both agreeing within industry accepted ± 5% guidelines. HERCO plots for Au (in the Central and West Upper Domains) are shown in Figure 14.18.

Source: SRK, 2023

14.9 RESOURCE CLASSIFICATION

SRK utilized industry accepted guidelines for declaration of mineral resources, such that Indicated Resources should be known within relative \pm 15% with a 90% confidence on an annual basis and Measured Resources should be known within relative \pm 15% with a 90% confidence on a quarterly basis. At this level, the drill spacing is usually close enough to permit the assumption of grade and volume (tonnes) continuity between drill holes. SRK used Sonoro's anticipated production rate of 8,000 tonnes per day to generate these volumes.

SRK bases a drill hole spacing study on geostatistical analysis incorporating the CV of the data, correlogram modeling, kriging variances and confidence intervals. The drill hole spacing study suggests a drill spacing of 22 m and 27.5 m as being required to support Measured Mineral Resources in the West Upper and Central Domains, respectively. A spacing of 45 m and 55 m is required to support Indicated Mineral Resources in the West Upper and Central Domains, respectively. These are shown in Figure 14.19. Based on the above distances, SRK determined that a spacing of 110 m would be reasonable to define Inferred Mineral Resources. The final classification of Mineral Resources also considered data quality, number of density data and geological continuity.

To incorporate the drill spacing criteria to outline confidence categories, SRK calculated the drill spacing for each block based on the average distance to the closest three drill holes and divided this value by 0.70 to approximate an equivalent grid drilling spacing.

Due to the scattered nature of Measured blocks and lack of density data in some lithology units, SRK reclassified all Measured blocks as Indicated.

An example of the classification is shown in Figure 14.20. Red blocks represent Indicated Mineral Resources, green blocks represent Inferred Mineral Resources. Drill traces are shown for reference.

Figure 14.19 Drill Spacing Results – West Upper and Central Domains

Source: SRK, 2023.

Figure 14.20 Classification - West Upper and Central Domains

Source: SRK, 2023

14.10 MINERAL RESOURCE STATEMENT

The reasonable prospects of eventual economic extraction requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the Mineral Resources are reported at an appropriate economic cut-off grade, taking into account extraction scenarios and processing recoveries. In order to meet this requirement, the QP considers for the purpose of this exercise that the Project is amenable to open pit mining.

To demonstrate reasonable prospects for eventual economic extraction, SRK constructed a conceptual constraining pit shell for the Project, based on Indicated and Inferred mineralized material. The updated mineral resource has been constrained using economic assumptions of surface open pit

scenarios. The potentially minable portions of the block model are conceptual in nature, with the mining limited to the oxide resources at the Cerro Caliche Project.

Input parameter assumptions are provided in Table 14.9, SRK has defined the proportions of Mineral Resource to have potential for economic extraction for the Mineral Resource based on a single cut-off grade.

For the purpose of this exercise, the QP has used the key assumptions as supplied by Sonoro and summarized in Table 14.9. Silver was not included in the input parameters. The assumed costs provided in the table are based on Sonoro's knowledge of similar project in Mexico.

A summary of the key assumptions is shown in Table 14.9.

Description	Units	Value Used
Gold Price	US\$/troy oz	1,800.00
Silver Price*	US\$/troy oz	25.00
Selling Cost	US\$/oz	0.20
Mining Cost	US\$/t	1.90
Processing Cost	US\$/t	6.47
General & Administration	US\$/t	0.49
Gold Recovery (Metallurgical)	%	74.00
Silver Recovery (Metallurgical)*	%	27.20
Slope Angle	Degrees (°)	50

Table 14.9 Pit Optimization Input Parameters

Source: Sonoro, 2023

*Silver revenue was not included in the conceptual pit optimization parameters, but was included in the AuEq calculation:

AuEq = [(Au grade* Au recovery* Au price) + (Ag grade*Ag recovery*Ag price)] / (Au recovery*Au price):

Where: Grades are based on OK estimates

Using the above parameters, SRK determined that an AuEq cut-off of 0.20 g/t was appropriate.

SRK has defined the mineral resources for the Cerro Caliche project using AuEq. This updated resource estimate for Cerro Caliche is based on data with a cut-off date of January 4, 2023, and is reported with an effective date of January 26, 2023, in Table 14.10.

Table 14.10 Cerro Caliche Project - Mineral Resource Estimate – 0.20 g/t AuEq Cut-off Grade1-7 (Effective Date: January 26, 2023)

	Tonnes	Ave	rage Gr	ade	Met	Metal Contents			
Classification	(kt)	Average Gr Au Ag (g/t) (g/t) 900 0.44 3.5 550 0.42 4.0	AuEq (g/t)	Au (koz)	Ag (koz)	AuEq (koz)			
Indicated	19,900	0.44	3.5	0.46	280	2,235	290		
Inferred	10,550	0.42	4.0	0.44	140	1,345	150		

kt = thousand tonnes

koz = thousand troy ounces

- 1. The Mineral Resources in this estimate were classified according to definitions outlined in CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines (CIM, 2014) prepared by the CIM Standing Committee on Reserve Definitions and adopted by CIM Council.
- 2. All dollar amounts are presented in U.S. dollars and all ounces are presented as troy ounces (1 oz = 31.104 g).
- 3. Pit shell constrained resources with reasonable prospects for eventual economic extraction ("RPEEE") are stated as contained within estimation domains above 0.20 g/t AuEq cut-off grade. Pit shells are based on an assumed long-term gold price of US\$1800/oz and gold recovery of 74%. Silver was not included in the optimization parameters. An overall slope angle of 50° was applied based on preliminary geotechnical data. Operating cost assumptions include mining cost of US\$1.90/tonne (t), processing cost of US\$6.47, and G&A cost of US\$0.49/t, and selling costs of US\$0.20/oz.
- 4. AuEq is calculated based on the long-term gold price of US\$1,800/oz, silver price of US\$25/oz, no mining dilution was applied, gold recovery is 74% and silver recovery is 27.2%. AuEq = [(Au grade* Au recovery* Au price) + (Ag grade*Ag recovery*Ag price)] / (Au recovery*Au price).
- 5. Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability. There is no certainty that all or any part of the Mineral Resources will be converted into Mineral Reserves in the future. The estimate of Mineral Resources may be materially affected by environmental permitting, legal, title, taxation, sociopolitical, marketing, or other relevant issues.
- 6. All quantities are rounded to the appropriate number of significant figures; consequently, sums may not add up due to rounding.
- 7. The mineral resources were estimated by Doug Reid, P.Eng.(EGBC 123571), Principal Consultant (Resource Geology) of SRK Consulting (U.S.), Inc., a Qualified Person. as defined under the terms of CIM guidelines.

14.11 MINERAL RESOURCE SENSITIVITY

The results of a grade sensitivity analysis are presented below to illustrate the sensitivity of the tonnage and grade estimates at various cut-off increments and the sensitivity of the potentially minable resource to changes in cut-off grade. The reader is cautioned that figures in the following tables should not be misconstrued as Mineral Resource or confused with the Mineral Resource Statement reported above. These figures are only presented to show the sensitivity of the block model estimated grades and tonnages to the selection of cut-off grade. The sensitivity analysis for Indicated blocks have been separated from Inferred blocks for reporting.

The grade-tonnage data presented in Table 14.11 and Figure 14.21 below for open pit sensitivity report tonnes and grade of the pit constrained mineral resource at various cut-off increments.

Cut-off		Indi	cated	Inferred				
AuEq (g/t)	Tonnes (kt)	AuEq (g/t)	Contained Metal (koz AuEq)	Tonnes (kt)	AuEq (g/t)	Contained Metal (koz AuEq)		
0.05	38,850	0.29	360	24,600	0.25	195		
0.10	30,750	0.35	345	17,300	0.32	180		
0.15	24,750	0.40	320	13,250	0.39	165		
0.20	19,900	0.46	290	10,550	0.44	150		
0.25	15,650	0.52	260	8,400	0.50	135		
0.30	12,250	0.59	230	6,200	0.58	115		
0.35	9,750	0.66	205	4,700	0.65	100		
0.40	7,700	0.73	180	3,650	0.73	85		
0.45	6,300	0.80	160	2,900	0.82	75		
0.50	5,250	0.86	145	2,450	0.88	70		

Table 14.11 Grade-Tonnage for Indicated and Inferred Mineral Resources

Source: Sonoro, 2023

Figure 14.21 Grade-Tonnage Curves for Indicated and Inferred Mineral Resources

Source: Sonoro, 2023

15.0 MINERAL RESERVE ESTIMATES

There are currently no mineral reserves at the Cerro Caliche Property.

16.0 MINING METHODS

16.1 OPEN PIT MINING

The long-term open pit mining evaluation for the "Cerro Caliche Project" provides for a nominal rate of run-of-mine (ROM) leach feed production of 4,000 t/d during the first 3 years and 12,000 t/d in the following years. The ROM total leach feed production is 28.6 Mt, based on an in-situ marginal cut-off grade (CoG) of 0.21 g/t gold, f over a period of 9.1 years, with a contained average of 45,000 ounces of gold per year and total of 414, 429 ounces. The waste material within the ultimate pit design is 60.0 Mt and the total material mined is 88.6 Mt, for an overall strip ratio (SR) of 2.1. The ultimate pit design contains waste material comprising all mined material below the CoG of 0.21 g/t gold, including low grade (LG) mineralized material between the "break even" and "marginal" Au CoG's of 0.19 g/t gold and 0.21 g/t gold, which may be segregated into a LG stockpile for future potential blending (LG material is not included in the in-pit resources).

16.1.1 Mining Battery Limits

The scope of the mining section of the technical study includes the pit optimization of the in-situ resources, pit designs for 12 deposits, and the production schedule to the deliver the mineralized material to the primary crusher.

The mining section of this study also includes the economic parameters for calculating the marginal and break-even cut-off grades (CoGs), economic and physical parameters for the pit optimization, selection of the pit shell for the basis of the pit design, the ultimate pit designs, and the production mining schedule, which is based upon mining the leach feed and waste inside of the pit design.

Mining capital and operating costs are also included within the battery limits as allowances for dewatering, auxiliary operational equipment, and technical team equipment. Preliminary haul roads and waste dump designs, as well as surface and mine water management, are not included within the scope of this PEA. These areas should be developed for a pre-feasibility (PFS) level study.

16.1.2 Open Pit Mining Method

This study assumes open pit mining methods, utilizing front-end loaders and/or hydraulic excavator to load haul trucks for waste and mineralized material haulage. Mining activities include site clearing, removal of topsoil, free-digging, drilling, blasting, loading, hauling and mining support activities.

Material within the pits is designed to be blasted at 6 m bench height intervals. The stripped waste material is to be hauled to the waste dump. The low-grade mineralized material can be segregated into designated stockpile areas, for subsequent processing. There are no stockpile locations, footprints, or designs contained in this PEA report. The low-grade material is treated as waste, highlighted as positive potential for future stages of planning.

For the PEA study, the mine has been assumed to be contractor operated, with the contractor providing the mining equipment and labour. The fleet details should be further refined in the next stage of PFS

level engineering, with quotations obtained from three contractors. There is opportunity to consider a trade off study of operator owned vs. contractor owned fleet within a PFS.

The mine plan has been scheduled based on operating 2-10 hour shifts per day, 7 days per week, for 336 days per year. There are 336 operational days, allowing for 29 days or 8%, for planned external downtime delays, weather condition delays, and mining operational issues.

16.1.3 Mining Fleet

For this PEA study, the mine equipment requirements and costing are based on Caterpillar equipment sizes. The proposed fleet would contain 5.2 m³ and 10.7 m³ capacity of excavators and loaders, that can load 78.3 t or similar capacity off-highway haulage trucks.

The selected equipment fleet is shown in Table 16.1.

Equipment	Number	Size	Units
Hydraulic Shovels (bucket capacity)	1	5.2	m ³
Front-end Loaders (bucket capacity)	2	10.7	m ³
Rear-dump Trucks (payload capacity)	13	78.3	t
Rotary Drill (diameter)	2	15.2	cm
Bulldozers (horsepower)	1	310	hp
Bulldozers (horsepower)	1	240	hp
Graders (horsepower)	2	145	hp
Water Tankers (capacity)	2	9,500	L
Fuel Tankers (capacity)	1	44,326	L
Service/Tire Trucks (gross vehicle weight)	1	1800	kg
Light Plants (watt capacity)	3	8.9	kW
Pickup Trucks (payload capacity)	4	680	kg

Table 16.1 Estimated Mobile Mining Equipment Fleet Requirements

A 6 m bench height has been selected for mining in both the (leach feed and waste zones. The hydraulic shovel will focus on the leach feed production, to increase selectivity for grade control, as well as to reduce mining dilution and losses. A grade control program should be developed at the feasibility study (FS) level of engineering. The front-end loaders are planned to be used primarily in a waste production capacity.

16.1.4 Production Requirements and Parameters

This open pit mine schedule targets 45,000 ounces of contained Au per year. Operating conditions, wage scales, and unit price are assumed to be typical for the local standard mining operations.

The main design criteria such as bench height, operating schedule, powder factors, average haul distances and schedule, along with overall mining tonnages and annual target Au production, are summarized in Table 16.2.

Parameters	Unit	Value		
Mining				
Mine Method	Truck	< & Shovel		
ROM Mining Initial Rate (Years 1-3)	Mt/y	1.3		
ROM Mining (Years 4 – 10)	Mt/y	4.0		
Waste Mining Initial Rate (Years 1-3)	Mt/y	8.5		
Waste Mining (Years 4-10)	Mt/y	28.2		
Total Tonnes (Years 1-3)	Mt/y	12.5		
Total Tonnes (Years 4-10)	Mt/y	41.7		
Stripping Ratio	Waste/ROM	2.1		
Process				
Process Method	Hea	p Leach		
Au Recovery	%	74.5		
Ag Recovery	%	26.5		
Haulage				
Avg. Haul Distance - ROM	km	5.24		
Avg. Haul Distance - Waste	km	3.38		
Operations				
Days per Year	d/y	365		
External Down Time	d/y	29		
External Down Time	%	8		
Calendar Time per Year (CT)	d/y	336		
Shifts per Day	shft/d	2		
Shift Delays	h/shft	2		
Operating Hours per Shift	h/shft	10		
Operating Time per Day	h/d	20		
Operating Time per Day	%	83.3		
Operating Hours per Year (per Unit)	h/y	6720		
Mechanical Availability (MA)	%	85		
Utilization (UT)	%	90		
Use of Availability (UA)	%	76.5		
Effectiveness (EF)	%	63.7		
Effective Operating Hours per Unit (EO)	h/y	5582		
Design				
Bench Height – ROM	m	6		
Flitch Height – ROM (operational only)	m	3		
Bench Height - Waste	m	6		
Drilling				
Powder Factor - ROM	kg/t	0.25		
Powder Factor - Waste	kg/t	0.25		

Table 16.2 Cerro Caliche Mine Production Schedule

16.1.5 Time Allocation

The mine is scheduled to operate 336 of 365 days of the year, with 8% or 29 planned down days for nonmining fleet related outages, such as weather, crusher maintenance and holidays. Mine fleet mechanical availability (MA) is assumed to be 85% and utilization (UT) is 90%, for an overall utilization of 76.5%. The operating time is 83.3%, based on 20 of 24 hours of planned operation per day, with two 10-hour shifts per day during the operating 336 d/y. The four hours per day of shift down time includes items such as meal and rest breaks, shift change, blasting and moving equipment, safety, unavailable manpower or power, and scheduled or unscheduled delays. Planned overall effective equipment operating time is 5,582 operating hours per year.

16.1.6 Unit Rates

Fuel is typically the largest cost to the mining operation and would be a large portion of the contractor's unit costs. A significant increase in fuel prices could greatly affect the unit mining cost per tonne of waste or leach feed. The costs of diesel fuel and gasoline used in this report are summarized in Table 16.3 and Table 16.4.

Currency	Litre	US Gallon*
MXN	21.780	82.446
USD	1.096	4.149

Table 16.3 Mexico Diesel Price

Table 16.4	
Mexico Gasoline	Price

Currency	Litre	US Gallon*
MXN	22.210	84.074
USD	1.117	4.228

In open pit mining, the electricity cost affects the cost of dewatering t and lighting of the pits, as well as buildings associated with technical support and maintenance. Overall, The Cerro Caliche Project has 12 active pit areas, with two to five potentially active in any given year. The electricity unit rates used in this PEA are shown in Table 16.5.

Table 16.5 Mexican Electricity Price

Currency	Household kWh	Business kWh
MXN	1.635	3.072
USD	0.082	0.155

16.1.7 General Arrangements for Mining

The Cerro Caliche block model has 6 m x 6 m x 6 m dimensions and the mine planning pit optimization, pit design, and production schedule are based on mining full 6 m benches throughout. For areas requiring drilling, the full 6 m benches should be drilled with a 0.60 m subgrade depth. Mining of the pits assumes excavation in 6 m benches, while utilizing two 3 m operational flitches as needed. To enhance grade control in the leach feed material. Full bench mining is recommended where possible, for increased productivity.

16.2 OPEN PIT OPTIMIZATION

The open pit design was based upon optimized pit shells. The execution of the pit optimization exercise was carried out using GEOVIA Whittle[™] software. The software used the Lerchs-Grossmann algorithm to generate optimized pit shells for incremental revenue factors with the resource block model and the selected input parameters.

16.2.1 Optimization Parameters

The economic parameters used for the cut-off grade (CoG) calculation and the pit optimization are presented in Table 16.6. The break-even Au CoG, essential to the optimization process and including mining and processing costs, is 0.21 g/t when using a gold price of US \$1,800. Material with Au equal or above 0.21 g/t represents mineralized material to be sent to the crusher and, thence, to the leach pad.

The marginal or internal Au CoG which determines if mineralized rock should be sent to the crusher or the waste dump after it has been mined (excludes mining cost as this is a sunk cost when the decision is made) is 0.19 g/t. The mineralized material with Au grades between 0.19 and 0.21 g/t is termed as low grade (LG) material and classified as waste but may be segregated to a LG area of a dump or separate stockpile as potential for future studies, pending further drilling and sampling.

The pit optimization used an Au price of US \$1,800/oz, an Ag price of US \$25/oz, with a gold equivalent (AuEq) factor of 72 (Au/Ag). The Au price converted to \$57.9/g based on 31.1035 grams per troy ounce. The estimated mining cost was \$1.90/t of material mined, processing cost was estimated at \$7.15/t stacked, including process plant, crushing, assay and G&A costs. The selling cost utilized was \$0.20/oz, converted to \$0.0064/g. Metallurgical recoveries utilized were 74.5% for Au and 26.5% for Ag. An overall pit slope angle of 50 degrees was assumed for the pit optimization.

Mining Costs	Unit	Value		
Mining Costs				
ROM Leach Feed Cost	\$/t mined	1.9		
Waste & LG Cost	\$/t mined	1.9		
Total Mining Cost	\$/t mined	1.9		
Process Costs				
Process Plant Cost	\$/t _{stacked}	5.72		

Table 16.6 Parameters for Pit Optimization and CoG

Mining Costs	Unit	Value
Crushing Cost	\$/t _{stacked}	0.89
Assay Cost	\$/t stacked	0.15
G&A Cost	\$/t stacked	0.49
Total Process Costs	\$/t _{stacked}	7.15
Economic Parameters		
Au Price	\$/oz	1800
Ag Price	\$/oz	25
AuEq Conversion Factor		72
Au Price	\$/g	57.9
Selling Cost	\$/oz	0.2
Au Process Recovery	%	74.5
Ag Process Recovery	%	26.5
Cut-off Grade		
Au Only, Marginal (Internal) CoG	g/t	0.19
Au Only, Break-Even CoG	g/t	0.21
Final Pit Slope Angle	٥	50

16.2.2 Optimization Results

The details of the combined nested optimized pit shells for incremental price factors, using the parameters in Table 16.6, are presented in Table 16.7. The grade-tonnage relationship shown in Table 16.7 is presented graphically in Figure 16.1

Figure 16.1 Grade and Tonnage for Pit Shells versus Gold Price

Au Price	\$/oz	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
Combined Pits		Cerro Caliche Central											
ROM Leach Feed	Mt	0.01	0.07	0.26	0.59	1.33	2.96	5.58	10.00	16.60	25.33	33.74	43.35
Grade	g/t	1.94	1.45	1.20	1.02	0.85	0.70	0.61	0.52	0.45	0.40	0.37	0.34
Contained Ounces	koz	0	3	10	19	36	66	109	167	240	328	400	470
Waste	Mt	0.00	0.02	0.13	0.38	1.05	2.64	6.50	12.85	22.75	40.36	55.34	70.89
Total	Mt	0.01	0.10	0.39	0.97	2.39	5.60	12.09	22.85	39.35	65.69	89.08	114.24
SR	t:t	0.22	0.28	0.48	0.64	0.79	0.89	1.16	1.29	1.37	1.59	1.64	1.64
CoG	g/t	0.86	0.70	0.58	0.48	0.41	0.36	0.31	0.27	0.24	0.21	0.19	0.17
Combined Pits						(Cerro Cal	iche Wes [.]	t				
ROM Leach Feed	Mt	0.12	0.24	0.36	0.52	0.66	0.86	1.38	2.21	3.20	4.49	6.82	9.42
Grade	g/t	2.16	1.94	1.78	1.66	1.53	1.35	1.09	0.88	0.73	0.62	0.50	0.44
Contained Ounces	koz	8	15	20	28	32	37	48	62	75	90	111	133
Waste	Mt	0.04	0.16	0.38	0.93	1.39	1.91	3.68	6.32	8.29	11.84	16.40	23.91
Total	Mt	0.16	0.39	0.74	1.45	2.05	2.76	5.06	8.53	11.50	16.33	23.22	33.33
SR	t:t	0.31	0.66	1.07	1.81	2.12	2.23	2.65	2.86	2.59	2.63	2.41	2.54
CoG	g/t	0.86	0.70	0.58	0.48	0.41	0.36	0.31	0.27	0.24	0.21	0.19	0.17
ALL PITS			-	-	-	Cerro	Caliche	Central +	West	-	-	-	-
ROM Leach Feed	Mt	0.13	0.31	0.62	1.11	1.99	3.82	6.97	12.21	19.81	29.82	40.56	52.77
Grade	g/t	2.15	1.82	1.53	1.32	1.07	0.84	0.70	0.58	0.49	0.44	0.39	0.36
Contained Ounces	koz	9	18	31	47	69	103	157	229	315	418	510	603
Recoverable Au (74%)	koz	7	13	23	35	51	76	116	170	233	309	378	446
Waste	Mt	0.04	0.18	0.51	1.31	2.45	4.55	10.18	19.17	31.04	52.19	71.74	94.80
Total	Mt	0.17	0.49	1.13	2.42	4.44	8.37	17.15	31.38	50.84	82.02	112.30	147.57
SR	t:t	0.30	0.57	0.82	1.19	1.23	1.19	1.46	1.57	1.57	1.75	1.77	1.80
CoG	g/t	0.86	0.70	0.58	0.48	0.41	0.36	0.31	0.27	0.24	0.21	0.19	0.17

Table 16.7 Optimization Results by Au Price and Pit

16.2.3 Selected Optimized Pit Shells

The optimized pit shell identified at a gold price of \$1,800/oz price was selected for use as the template for the final pit design in this study. This shell contains 29.8 Mt of mineralized rock with an average grade of 0.44 g/t and 52.2 Mt of waste, for a total of 82 Mt of material. The design based on the selected pit shell adds additional waste and mineralized material due to the inclusion of ramps and catch benches in the designs which make them larger than the selected pit shell. The optimized pit shell used as the basis for the pit design is illustrated in Figure 16.2.

Figure 16.2 Optimized Pit Shells

Source: Sonoro Gold (2023)

16.3 OPEN PIT DESIGN PARAMETERS

Based on pit design and preliminary evaluation template parameters, ramp widths were based on anticipated haul trucks of 78.3 t capacity and sized at 15 m in width. One-way traffic haul roads were used at the pit bottom, at a width of 10 m. Mining faces will be 6 m high and catch bench berms will be placed every vertical 6 m.

Roads have a maximum gradient of 10% assigned to the shortest distance along the ramp, to prevent gradient rules being broken around corners. The inside circumference of a ramp may be greater than 8%, if the gradient is applied to the ramp centreline or high wall.

A summary of geotechnical parameters used for the pit design is presented in Table 16.8 and a schematic of the bench design parameters is illustrated in Figure 16.3.

Table 16.8 Open Pit Design Parameters

Parameter	Unit Symbol	Value
Maximum bench height in overburden and waste	m	6
Maximum bench height in mineralization	m	6
Face angle (Batter Angle)	o	65
Berm width	m	2.2
Ramp width – 2-way traffic	m	15
Ramp width – 1 way traffic	m	10
Ramp gradient (steepest)	%	10
Overall pit slope angle	0	50
Minimum mining width	m	20

Figure 16.3 Bench Design Parameters

16.3.1 Pit Designs

The ultimate pit design has 12 pit areas, as shown in Figure 16.4. The overall pit slope angles are all below the 50-degree maximum of the inter-ramp angle defined by the face angle and the berm widths.

Figure 16.4 Ultimate Pit Design

Source: Sonoro Gold (2023)

Cerro Caliche West is comprised of the Cabeza Blanca and El Colorado Pits, while the remainder of the pits are all considered part of Cerro Caliche Central.

The breakdown of the contents of the individual pit designs by resource class is presented in Table 16.9.

Table 16.9 Resources Included Within the Pit Design

Pit Name	Resource Class	Ore (tonnes)	Au (g/t)	Ag (g/t)	AuEQ (g/t)	Contained Au (oz)
	Measured	0	0.000	0.000	0.000	0
Japoneses-Buena Vista	Indicated	9,642,571	0.375	3.142	0.391	121,150
	Inferred	1,101,471	0.356	2.261	0.367	13,010
	Measured	0	0.000	0.000	0.000	0
Cuervos	Indicated	960,326	0.554	3.854	0.573	17,699
	Inferred	382,037	0.397	2.274	0.409	5,020
	Measured	0	0.000	0.000	0.000	0
Abejas	Indicated	1,311,606	0.442	4.749	0.466	19,650
	Inferred	43,890	0.347	4.008	0.368	519
	Measured	0	0.000	0.000	0.000	0
Veta de Oro	Indicated	141,095	0.687	15.080	0.764	3,466
	Inferred	390,236	0.409	6.495	0.442	5,545
	Measured	0	0.000	0.000	0.000	0
El Bellotoso	Indicated	113,833	0.367	7.967	0.408	1,492
	Inferred	1,946,033	0.322	5.203	0.348	21,791
	Measured	0	0.000	0.000	0.000	0
El Rincon	Indicated	0	0.000	0.000	0.000	0
	Inferred	1,750,166	0.342	7.728	0.382	21,482
	Measured	0	0.000	0.000	0.000	0
Buena Suerte	Indicated	2,709,578	0.493	4.177	0.514	44,770
	Inferred	1,439,172	0.492	4.442	0.514	23,800
	Measured	0	0.000	0.000	0.000	0
Chinos NW	Indicated	811,836	0.331	4.261	0.353	9,206
	Inferred	527,490	0.308	3.020	0.323	5,485
	Measured	0	0.000	0.000	0.000	0
Chinos Altos	Indicated	391	0.256	0.530	0.258	3
	Inferred	363,913	0.363	2.324	0.375	4,388
	Measured	0	0.000	0.000	0.000	0
La Espanola	Indicated	0	0.000	0.000	0.000	0
	Inferred	609,838	0.463	2.145	0.474	9,295
Total Resource Caliche Central	ALL	24,245,482	0.400	4.038	0.420	327,772
Caliche West	Measured	0	0.000	0.000	0.000	0
(Cabeza Blanca-	Indicated	1,180,864	0.714	3.300	0.730	27,732
Guadalupe)	Inferred	1,340,293	0.595	1.757	0.604	26,011
Caliaha Waat	Measured	0	0.000	0.000	0.000	0
	Indicated	1,606,954	0.549	2.259	0.560	28,943
	Inferred	242,142	0.500	2.049	0.510	3,970
Total Resource Caliche West	ALL	4,370,253	0.605	2.375	0.617	86,657
Total Resource Caliche Project	ALL	28,615,735	0.431	3.784	0.450	414,429

16.3.2 Pushbacks

The mining of some of the pits will include phases or pushbacks. In particular, the Japoneses-Buena Vista, Buena Suerte and El Colorado pits have two phases each, which smooths the waste mined earlier in the Project. This was done to improve the net present value and to maintain a less variable stripping ratio throughout the various pits.

16.4 MINING PRODUCTION SCHEDULE

Mine production scheduling was carried out using Datamine's NPVS software. The total quantities of leach feed, waste and the grades coming from each pit in the life-of-mine production schedule are summarized in Table 16.10, and the annual schedule of ROM leach feed production is summarized in Table 16.11.

The mining rate follows the 4,000 and 12,000 tpd throughput capacities of the crushing circuit in Years 1-3 and Years 4-10 respectively. The daily rates add up to annual totals of 1.34 Mt and 4.03 Mt of ROM leach feed, respectively. The source of ore by individual pit it shown graphically in Figure 16.5.

The LOM production schedule includes ROM leach feed of 28.6 Mt and e 60.0 Mt of waste, for a total of 88.6 Mt mined. The production schedule was estimated on a monthly basis for the first two years, then continued on a yearly basis until the end of the mine life in early Year 10. The Cerro Caliche annual LOM production schedule is provided in Table 16.10.

Figure 16.5 Source of ROM Leach Fed by Pit, Life-of-Mine

Table 16.10 Mine Production Schedule s by Pit

Pit	Parameter	Units	Total
	ROM	t	10,744,042
	Au Grade	g/t	0.373
Japoneses- Buena Vista	Ag Grade	g/t	3.052
	AuEq Grade	g/t	0.388
	Au Contained Ounces	oz	134,160
	ROM	t	1,849,096
	Au Grade	g/t	0.542
El Colorado	Ag Grade	g/t	2.231
	AuEq Grade	g/t	0.554
	Au Contained Ounces	oz	32,914
	ROM	t	1,342,363
	Au Grade	g/t	0.509
Cuervos	Ag Grade	g/t	3.404
	AuEq Grade	g/t	0.526
	Au Contained Ounces	oz	22,719
	ROM	t	4,148,750
	Au Grade	g/t	0.492
Buena Suerte	Ag Grade	g/t	4.269
	AuEq Grade	g/t	0.514
	Au Contained Ounces	oz	68,571
	ROM	t	531,331
	Au Grade	g/t	0.483
Veta de Oro	Ag Grade	g/t	8.774
	AuEq Grade	g/t	0.528
	Au Contained Ounces	oz	9,011
	ROM	t	1,355,496
	Au Grade	g/t	0.439
Abejas	Ag Grade	g/t	4.725
	AuEq Grade	g/t	0.463
	Au Contained Ounces	oz	20,169

Pit	Parameter	Units	Total
	ROM	t	2,521,157
	Au Grade	g/t	0.65
Cabeza Blanca	Ag Grade	g/t	2.48
	AuEq Grade	g/t	0.663
	Au Contained Ounces	oz	53,743
	ROM	t	1,339,326
	Au Grade	g/t	0.322
Chinos NW	Ag Grade	g/t	3.772
	AuEq Grade	g/t	0.341
	Au Contained Ounces	oz	14,691
	ROM	t	364,304
	Au Grade	g/t	0.363
Chinos Altos	Ag Grade	g/t	2.322
	AuEq Grade	g/t	0.375
	Au Contained Ounces	oz	4,391
	ROM	t	1,750,166
	Au Grade	g/t	0.342
El Rincon	Ag Grade	g/t	7.728
	AuEq Grade	g/t	0.382
	Au Contained Ounces	oz	21,482
	ROM	t	609,838
	Au Grade	g/t	0.463
La Espanola	Ag Grade	g/t	2.145
	AuEq Grade	g/t	0.474
	Au Contained Ounces	oz	9,295
	ROM	t	2,059,866
	Au Grade	g/t	0.324
El Bellotoso	Ag Grade	g/t	5.356
	AuEq Grade	g/t	0.352
	Au Contained Ounces	oz	23,283

Pit	Parameter	Units	Total
	ROM	t	28,615,735
	Au Grade	g/t	0.431
	Ag Grade	g/t	3.784
Total Minod	AuEq Grade	g/t	0.45
rotat mined	Au Contained Ounces	oz	414,429
	Waste	t	60,019,311
	Total	t	88,635,046
	SR	t:t	2.1
PRODUCTION ASSUMPT	IONS		TOTAL
Days			3,057
Total ROM tonnes/day	9,362		
Total ROM tonnes over L	28,615,735		
Total Insitu ROM Ounces	over LOM		414,429

Table 16.11 Cerro Caliche Project Leach Feed Production Schedule

MINE S	CHEDULE	Units	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10	Total
	ROM	Mt	0.84	0.28					0.38	1.02			2.5
Cabeza Blanca-	Au Grade	g/t	0.71	1.35					0.63	0.42			0.65
Guadalupe	Ag Grade	g/t	2.40	1.12					2.95	2.74			2.48
	AuEq Grade	g/t	0.73	1.36					0.64	0.43			0.66
	ROM	Mt	0.46	0.26					0.21	0.92			55.74 1.8
	Au Grade	g/t	0.66	0.58					0.39	0.509			0.54
El Colorado	Ag Grade	g/t	3.28	2.15					2.66	1.627			2.23
	AuEq Grade	g/t	0.68	0.59					0.40	0.517			0.55
	Au Contained	koz	10.02	4.87	1.02	2.54			2.74	15.28			32.91
	Au Grade	g/t	0.33	0.34	0.53	0.50							0.49
Buena Suerte	Ag Grade	g/t	3.65	4.67	3.17	4.64							4.27
	AuEq Grade	g/t	0.35	0.40	0.55	0.53							0.51
	Au Contained	koz	0.44	7.00	18.16	42.98							68.57
	RUIVI Au Grade	a/t		0.27	0.32	0.77							1.4
Abeias	Ag Grade	g/t		6.48	4.87	4.06							4.73
	AuEq Grade	g/t		0.52	0.46	0.44							0.46
	Au Contained	koz		4.48	4.65	11.03							20.17
	ROM	Mt				0.72	2.72	3.47	3.11	0.72			10.7
Japoneses-Buena	Ag Grade	g/t g/t				4.05	3.13	3.49	2.76	0.37			3.05
Vista	AuEq Grade	g/t				0.43	0.40	0.37	0.39	0.38			0.39
	Au Contained	koz				9.92	35.16	41.76	38.54	8.79			134.16
	ROM	Mt					0.78	0.57					1.3
C	Au Grade	g/t					0.54	0.46					0.51
Cuervos	Ag Grade AuEg Grade	g/t g/t					4.20	0.47					3.40 0.53
	Au Contained	koz					14.14	8.58					22.72
	ROM	Mt					0.53						0.5
	Au Grade	g/t					0.48						0.48
Veta de Oro	Ag Grade	g/t					8.77						8.77
	Aueq Grade	koz					9.01						9.01
	ROM	Mt					0.0-		0.33	1.01			1.3
	Au Grade	g/t							0.36	0.31			0.32
Chinos NW	Ag Grade	g/t							5.84	3.09			3.77
	AuEq Grade	g/t koz							0.39	0.32			0.34
	ROM	Mt							4.21	0.36	0.00		0.4
	Au Grade	g/t								0.36	0.43		0.36
Chinos Altos	Ag Grade	g/t								2.33	1.16		2.32
	AuEq Grade	g/t								0.37	0.43		0.37
	ROM	Mt								4.54	2.06		2.1
	Au Grade	g/t									0.32		0.32
El Bellotoso	Ag Grade	g/t									5.36		5.36
	AuEq Grade	g/t									0.35		0.35
	ROM	Mt									1.75		1.8
	Au Grade	g/t									0.34		0.34
El Rincon	Ag Grade	g/t									7.73		7.73
	AuEq Grade	g/t									0.38		0.38
	ROM	KOZ Mt									0,22	0,39	21.48
	Au Grade	g/t									0.47	0.46	0.46
La Espanola	Ag Grade	g/t									3.37	1.46	2.15
	AuEq Grade	g/t									0.49	0.47	0.47
	Au Contained	KOZ	1 2	1 2	1 2	4.0	4.0	4.0	4.0	4.0	3.42	5.88	9.29
	Au Grade	g/t	0.68	0.64	0.51	0.47	0.43	0.37	0.40	0.40	0.34	0.4	0.43
ROM	Ag Grade	g/t	2.74	3.82	3.57	4.42	4.08	3.32	3.03	2.22	6.27	1.46	3.78
	AuEq Grade	g/t	0.70	0.66	0.53	0.49	0.45	0.39	0.41	0.41	0.37	0.47	0.45
	Au Contained	koz	30	28.4	22.8	63.9	58.3	50.3	53.3	53.1	48.2	5.9	414.4
Waste	LG Stockpile	Mt ∿4+	0	0.5	0.5	1.4	1.4	1.4	1.6	1.4	1.6	0.0	10.29
waste	Total Waste	Mt	4	3.8	2.3	8.5	7.0	6.3	9.3	9.0	8.5	0.9	60.0
	ROM	Mt	1.3	1.3	1.3	4.0	4.0	4.0	4.0	4.0	4.0	0.4	28.62
	Au Grade	g/t	0.68	0.64	0.51	0.47	0.43	0.37	0.40	0.40	0.34	0.46	0.43
	Ag Grade	g/t	2.74	3.82	3.57	4.42	4.08	3.32	3.03	2.22	6.27	1.46	3.78
Mined	Aucq Grade	g/t koz	30	28.4	0.53 22.8	63.9	0.45 58.3	50.3 50.3	53.3	53.1	48.2	5.9	0.45 414.4
	Waste	Mt	4	3.8	2.8	8.5	7.0	6.3	9.3	9.0	8.5	0.9	60.0
	Total Tonnes	Mt	5	5.2	4.2	12.5	11.0	10.3	13.3	13.0	12.5	1.2	88.6
	SR	t:t	3.0	2.9	2.1	2.1	1.7	1.6	2.3	2.2	2.1	2.2	2.10

16.4.1 Mine Plan Sequence

The pit phases were reviewed pit-by-pit for the entire mine plan, in a detailed bench-by-bench schedule.

In the overall production plan, there are several active pits being mined at any given time, thus minimizing the impact of congestion of equipment in the pit and on haul roads. That schedule also increases the flexibility of the mine plan during rain or other operational constraining events.

16.5 MINING EQUIPMENT FLEET

The mine will operate as a conventional truck and shovel operation. The typical production cycle will be drilling, blasting grade control, loading and hauling. Primary loading units are estimated to be one hydraulic shovel and two front-end loaders, two drills, plus support equipment providing development access, road maintenance and equipment servicing capability.

16.5.1 Major Mine Equipment Operating Parameters

The mine will operate 20 hours per day for 336 planned days per year. Shift employees will work 10hour shifts. In general, it is expected that major equipment will have initial mechanical availability initially 85%. Detailed equipment productivity calculations have been made on an annual basis for drills, shovels and trucks. Support equipment operating time has been factored on an annual utilization basis.

16.5.2 Loading

The loading fleet will consist of one 5.2 m³ hydraulic shovel, and two 10.7 m³ wheel loaders. The wheel loaders will be available to work in stockpile areas, low face conditions, and where required to meet production objectives during periods of unscheduled shovel downtime. The hydraulic shovel and the wheel loaders will be required in Year -1, pre-production, for road pit access.

The loading equipment will operate 2-10-hour shifts per day. The four hours of planned downtime per day will be utilized for scheduled maintenance, tire changes, refueling and other administrative activities required for operators such, as safety and/or other operational and corporate training initiatives.

16.5.3 Haulage

Rear-dump off-highway trucks (78.3 t) will be used to move material to the pre-concentration area and to the waste dump and stockpiles. The haulage trucks will operate 2-10 hour shifts per day. Equipment availability is expected to be 85%.

The cycle times for ROM leach feed or waste were calculated for each year of production and were based on haul distances and road grades. These were then used to calculate haul truck productivities and fleet requirements. In is estimated that, on average, a total of 13 haulage units will be required during the mine production throughout the operational LOM.

16.5.4 Mine Support

The mining support equipment includes track dozers, graders, water truck, fuel truck and service/tire truck required for road, bench and dump maintenance. Miscellaneous ancillary equipment is also required to service, maintain the major equipment and support ongoing pit operations.

Track dozers will operate on active benches, pushing back break and performing heavy dozer operations around operating shovels. In the open pit, track dozers will also build roads, prepare sinking cut faces, clean berms, scale walls and rip hard toes. On waste dumps and stockpiles, the track dozers will maintain positive grades on the bench surfaces near the crest and provide safe berms for truck dumping.

Road graders will maintain roads, dump surfaces, and bench surfaces to provide level running surfaces. Water trucks will be used in the road maintenance program to provide dust control and safer conditions from an air quality and driver visibility perspective.

A complement of ancillary equipment will also be available to perform service functions, including fueling, and to provide work area lighting, excavation capability for ditching etc., as required to ensure a safe self-sufficient mining operation.

Pick-up trucks and crew-cabs will be required for transportation of supervisors, technical staff and maintenance personnel.

Explosives will be delivered to the blast hole. The blasting crew will require support equipment to pump wet holes and deliver blasting accessories and stem holes. The bulk delivery truck and storage facilities will be provided by the contractor supplying the explosives.

16.5.5 Haulage Distance

The average one-way haulage distances from the centroid of each pit to the crusher and the waste dump average the following for the LOM production schedule:

- ROM 5,214 m
- Waste 3,232 m

16.5.6 Drilling and Blasting

The primary blast hole drills are planned as rotary machines capable of single pass drilling 146 mm diameter holes for a 6 m bench height plus sub-grade. These drills will be used for production and wall control drilling. These drills can also be used for drilling sub-horizontal drain holes for wall slope depressurization, if required.

Blast hole drilling requirements have been estimated on an annual basis, according to the production schedule and wall control drilling requirements for trim blasting. Material is to be drilled on a 6 m bench using a 5.0 m x 5.0 m blast pattern. Subgrade drilling should be 0.60 m to allow even breakage to the design bench elevation.

Blasthole cuttings should be sampled and assayed for grade control. The wall control blasting should consist of trim rows at reduced spacing. The sub-grade drilling depth should be reduced in areas of final berm locations.

Blasting should be carried out with heavy ammonium nitrate fuel oil (ANFO) with an estimated density of 1.1 tonnes per cubic metre. The overall production blasting agent consumption is expected to be 0.20 kg per tonne of rock blasted. To achieve this powder factor, each hole should be filled to a depth of 4.2 m with ANFO and covered with 2.2 m of stemming, consisting of crushed gravel or other appropriate material. Most (if not all) of the blast holes should be single primed and initiated using non-electric methods. An explosive supply contractor will deliver bulk explosives to the bore hole.

Where drilling and blasting is needed to fragment the ROM leach feed and waste rock for loading and hauling, the parameters are estimated as those given in Table 16.12. Drilling and blast parameters definitions are illustrated in Figure 16.6.

Parameter	Units	Value
Burden	m	5.00
Spacing	m	5.00
Depth	m	6.00
sub level	m	0.60
Rock Volume Blasted/hole	m³	150
Density	t/m³	2.58
t/hole	t	387
Diameter	mm	146
BH area	m²	0.017
BH volume	m³	0.110
Exp. SG	kg/m³	1100
capacity	kg	122
PF if Full	kg/t	0.31
desired PF	kg/t	0.20
load/hole	kg	77.4
Fill depth	m	4.20
Stemming	m	2.40

Table 16.12 Conceptual Drilling and Blasting Parameters

Figure 16.6 Drilling Parameter Dimensions

16.6 OVERALL ESTIMATED MOBILE FLEET

The estimated overall equipment fleets required to meet the annual production requirements are listed in Table 16.13. Year 10 is not included, as the LOM production schedule finishes within the first month of that year. Year 9 fleets apply until completion in Year 10.

Equipment Type	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
Mining Trucks	7	7	7	13	13	13	13	13	13
Front loader	2	2	2	2	2	2	2	2	2
Hydraulic Excavator	1	1	1	1	1	1	1	1	1
Drill	2	2	2	2	2	2	2	2	2
Explosive Truck	1	1	1	1	1	1	1	1	1
Dozer	3	3	3	3	3	3	3	3	3
Motor Grader	2	2	2	2	2	2	2	2	2
Water Truck	1	1	1	1	1	1	1	1	1
Total	19	19	19	25	25	25	25	25	25

Table 16.13Estimated Mobile Fleet Requirements

Source: P.D Sharma (https://miningandblasting.wordpress.com/2012/10/)

16.7 MINING PERSONNEL REQUIREMENTS

The personnel directly involved with the mining operations consist of the Owner's Team and the Contractor's Team. The Owner's Team enumerated in Table 16.14 consists of engineers, geologists, technicians, surveyors, the mine superintendent, and the mine manager.

Owner's Geology and Mining Team	# Of Positions	Day Shift	Afternoon Shift	Off
Mine manager	1	1	-	-
Mine superintendent	1	1	-	-
Mine planning engineer	2	1	1	-
Mine planning technician	2	1	1	-
Surveyor	2	1	1	-
Surveyor technician	6	2	2	2
Dispatch system operator	3	1	1	1
Senior geologist	1	1	-	-
Production geologist	3	1	1	1
Geological technician	6	2	2	2
Total	27	12	9	6

Table 16.14 Personnel Requirements: Owners Team

Table 16.15 provides an estimates of the number of equipment operators required to meet development and production targets in the LOM production schedule. Thes personnel will be provided by the mining contractor.

Equipment **Personnel/Equipment** Articulated Truck 3 Front loader 3 Hydraulic Excavator 3 Drill 2 **Explosive Truck** 2 Dozer 3 2 Motor Grader Water Truck 2

Table 16.15 Contractor Personnel Required per Unit Equipment

The Contractor's Team estimated in Table 16.16 are primarily equipment operators, maintenance personnel, shift supervisors and a Project manager.

Contractor Personnel	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
Truck operators	21	21	21	39	39	39	39	39	39
Front loader operator	3	3	3	3	3	3	3	3	3
Hydraulic Excavator operator	6	6	6	6	6	6	6	6	6
Drill operator	4	4	4	4	4	4	4	4	4
Explosive Truck operator	2	2	2	2	2	2	2	2	2
Dozer operator	6	6	6	9	9	9	9	9	9
Motor Grader operator	4	4	4	4	4	4	4	4	4
Water Truck operator	2	2	2	2	2	2	2	2	2
Total - Equipment Operators	48	48	48	69	69	69	69	69	69
Operations Manager	1	1	1	1	1	1	1	1	1
Shift Supervisors	3	3	3	3	3	3	3	3	3
Maintenance Supervisor	2	2	2	2	2	2	2	2	2
Maintenance Planner	2	2	2	2	2	2	2	2	2
Mechanics	8	8	8	12	12	12	12	12	12
Maintenance Support	4	4	4	6	6	6	6	6	6
Total Mining Operations Team	68	68	68	95	95	95	95	95	95

Table 16.16 Estimated Manpower Requirements for Contractor Team

16.8 WASTE ROCK AND TAILINGS

The Cerro Caliche pits will produce 60 Mt of waste, assuming an average loose density of approximately 1.95 t/m3 or less, based on a swell factor of 1.3 (30% swell). Since all ore is processed on a heap leach pad, there is no tailings pond, but rather just the spent heap leach pad at the end of the LOM production schedule.

Both the waste dump and the leach pad will be sloped and revegetated at the end of the mine life, as part of the reclamation and closure plan.

16.8.1 Waste Rock Storage and Management Facility

The waste dump has been designed to hold up to 60 Mt of waste. The waste dump entrance is located 600-700 m south of the El Colorado pit and generally to the south–southwest of the pits. The waste dump covers an area of approximately 1.0 km west to east and 1.0 km north to south, within the local coordinates presented in Table 16.17.

Table 16.17 Waste Dump Location

Range	Minimum	Maximum
X Coordinate	534,400	535,600
Y Coordinate	3,363,800	3,364,800

A plan view of the waste dump is provided in Figure 16.7.

Figure 16.7 Waste Dump Design

Source: Sonoro Gold (2023)

16.9 MINING OPERATING COSTS

The estimated mining operating costs are broken down by area in Table 16.18.

Table 16.18 Mining Operating Costs Breakdown

Cost Summary		
Total Mining Unit Cost	\$/mt	1.90
Explosives	\$/mt	0.18
Drilling	\$/mt	0.20
Loading	\$/mt	0.22
Hauling	\$/mt	0.66
Auxiliar Equipment	\$/mt	0.62
Operating Expenses	\$/mt	0.02

The mining operating cost estimate includes all the cost associated with production such as:

- 1) Mining cost: drilling, blasting, loading, hauling, auxiliary equipment.
- 2) Pit dewatering.
- 3) Pre-production: access road construction and initial pre-stripping.
- 4) Mine administration and support: environmental, health and safety, and ejido (community).
- 5) Community relations, camp, security, purchasing, warehouse, transportation, and logistics.
- 6) Communication IT, administration, human resources, and accounting.
- 7) Site services, including water management, general and administration cost for the operation, including head office costs, and supply of electrical power.

16.10 METHODOLOGY

The operating cost estimate was prepared by synthesis of operating and maintenance labour productivities, supplies consumption and energy consumption, based on industry experience, and by benchmarking against other similar operations, where appropriate.

Operating and maintenance supply costs were based on in-house data and vendor quotations and are exclusive of taxes. Consumable quantities (fuel, explosives, tires, blasting accessories, etc.) were estimated from expected unit consumption rates, per hour or per tonne.

16.11 GENERAL ARRANGEMENT

The overall general arrangement of the mine site, with haul roads to waste and leach feed destinations is illustrated in Figure 16.8.

Sonoro Gold Corp.

Figure 16.8 Site Layout

Source: Sonoro Gold (2023).

17.0 RECOVERY METHODS

17.1 SUMMARY

This section describes, at the PEA level of assurance, the recovery methods to be implemented in the design of the crushing and process facilities for the Cerro Caliche Project. The results of the preliminary testwork presented in Section 13 were used as a basis for flowsheet development and design criteria. The plant design for this PEA is based on a nominal 4,000 t/d (Years 1 and 2) and a nominal 12,000 t/d (Years 3-9) of mineralized material with average grades of 0.43 g/t Au and 3.75 g/t Ag.

The process plant flowsheet design comprises of three stages of conventional crushing, material handling of crushed product and loading onto the lined heap pads. Solution ponds and pumping system allows irrigation of loaded mineralized material and subsequent collection of the pregnant solution. The pregnant solution is pumped to two trains of carbon-in-column tanks for loading gold and silver onto the carbon. Standard carbon in column processing includes carbon advancement, carbon addition, and loaded carbon recovery. The Cerro Caliche processing plant will also operate carbon stripping, carbon reactivation, electrowinning and doré refining. The gold and silver are stripped and recovered for the production of dorè bars.

Make-up water for reagent mixing, water evaporation and general process requirements is supplied from surface wells and pumped to the plant facility. Unit operations and support facilities includes the following:

- ROM material receiving and primary crushing.
- Secondary cone crushing with screens.
- Tertiary cone crushing with screens.
- Material handling of closed circuit crushing and heap leach pad loading.
- Lind heap pads capable of supporting the entire resource.
- Solution ponds: barren, pregnant, and emergency pond complete with internal pumping, piping and flow distribution.
- Two trains of five stage carbon-in-columns.
- Process pumping, screening, and loaded as well as barren carbon handling.
- Carbon strip vessels, electrowinning cells, reactivation kiln, and dorè refinery.
- Reagent preparation facilities (main plant).
- Metallurgical Laboratory.
- Utilities.

The Cerro Caliche simplified process flowsheet (PFD) for 12,000 t/d (Year 3-9) is shown in Figure 17.1 and the process flow schematic is shown in Figure 17.2.

Sonoro Gold Corp.

Figure 17.1 Simplified Process Flowsheet (12,000 t/d – Years 3-9)

Source: Sonoro Gold and D.E.N.M. (2021)

Figure 17.2 Simplified Process Flow Schematic

Source: Sonoro Gold (2021)

17.2 PLANT DESIGN

17.2.1 Design Criteria

The Cerro Caliche process plant is designed to treat gold-silver bearing mineralized material at a nominal rate of 4,000 t/d, or 1,344,000 t/y, in years one and two, and 12,000 t/d, or 4,032,000 t/y, for year three through nine. The preliminary key process design criteria are shown in Table 17.1.

Criteria	Units	Value
Ore Characteristics		
Specific Gravity	g/cm ³	2.65
Bulk Density	t/m ³	1.65
Moisture Content	%	2.0
Work Index (Wi)		16.0
Abrasion Index (estimated)	g	0.75
Plant Availability/Utilization		
Overall Plant Feed-Nominal – Years 3-9	t/y	4,032,000
Plant Feed- Nominal – Years 3-9	t/d	12,000
Crushing Plant Feed – Years 3-9	t/d	12,000
Crusher Plant- Plant Utilization	%	60.0
Leaching and Carbon Loading	%	92.0
Crushing Circuit Throughout Rate – Years 3-9	t/h	833
Crushing Product (to pad)	P80 - in. (mm)	1⁄2 - (12.5)
Plant Production		
Plant Feed Characteristics		
Gold Head Grade	g/t	0.43
Silver Head Grade	g/t	3.75
Metal Recoveries		
Anticipated Overall Gold Recovery- design ¹	%	72
Anticipated Overall Silver Recovery- design	%	26.7

Table 17.1 Process Design Criteria

Source: Sonoro and D.E.N.M. (2023) and Section 13

Section 13 Column testing indicates a gold recovery of 74 % but the process design gold recovery has been discounted by 2% to 72%. This is done to allow for leaching in the field versus optimum conditions in the laboratory columns as well as for inefficiencies in pad stacking and permeability. Cyanide consumption is also discounted from 0.55 kg/t to 0.20 kg/t for the process design, operating costs, and financial model.

17.2.2 Operating Schedule and Availability

The Cerro Caliche processing plant is designed to operate for two 12-hour shifts per day, 360 days per year. Utilization expected for the specific circuits is 60% for the primary crusher and 92% for the leaching and carbon adsorption. The factors applied allow for sufficient downtime for maintenance, both scheduled and unscheduled, within the crushing and processing areas.

17.3 12,000 T/D PROCESS PLANT DESCRIPTION

17.3.1 Primary Crushing Circuit

The proposed primary crushing circuit reduces the run-of-mine mineralized material from a nominal top size of 600 mm to a product of 80% passing (P_{80}) – ½-in (12.5 mm) for the conveyor loading to the heap leach pads.

The crushing circuit includes, but is not limited to, the following equipment:

- ROM feed hopper c/w feeder and vibrating grizzly screen.
- Primary jaw crusher.
- Associated conveyor belts to feed and discharge to the primary crushed mineralization stockpile.
- Belt scale and belt magnet.

The jaw crusher, 1500 mm x 1070 mm (59-in x 42-in.) and – 200 kw processes a nominal 833 t/hr of oversized material based on the utilization factor noted in Table 17.1. The jaw crusher discharge is conveyed to the crushed mineralization stockpile.

17.3.2 Primary Crushed Mineralized Material Stockpile and Reclaim

The stockpile provides production surge capacity to ensure a steady rate to the secondary crushing circuit. The equipment in this area includes:

- Reclaim vibrating pan feeders (4) at variable speed.
- Associated conveyor belt feed system with belt scale.

The pan feeders discharge onto the secondary feed conveyor, to feed crushed mineralization to the secondary screen unit. The feeders reclaim the material from the stockpile and ensure a controlled feed rate to the secondary crushing circuit. Feed control to the feeders is ensured by the inline belt scale.

17.3.3 Secondary and Tertiary Crushing Circuit

The equipment in this area includes:

- Secondary inclined linear screen: Double Deck.
- Secondary cone crusher:600 kw installed power with closed side setting of 44 mm.
- Tertiary Inclined Screens: two units for parallel operation.
- Tertiary Cone Crushers: two units at 600 kw installed power with closed side setting of 15 mm.
- Associated conveyor belt feed and discharge systems for recirculation and discharge to crushed mineralization stockpile.

The crushing circuit is located upstream of the heap leach pad facility and process plant and ponds. The crushed material is loaded and trucked to the pads and loaded systemically onto the lined pads. A crushing simulation is provided in Figure 17.3.

Figure 17.3 Crushing Simulation

17.3.4 Heap Leach Pad System and Solution Distribution

The heap leach pads are built in two phases over the life-of-mine (LOM). Phase one construction will have a pad area covering 222,000 m² of lined HDPE 60 mil LLDPE material. The pad area is complete with all associated collection piping, geotextile and supporting items.

Phase two planned expansion in year two is for an area of 246,00 m² and collection ponds are complete with all pumping and piping distribution.

17.3.5 Carbon In Columns (CIC) Adsorption Circuit

The pregnant solution is pumped to two carbon in column circuits in parallel. Each train consists of five upflow design tanks with associated piping and valving. Carbon advancement pumping and handling are included in this circuit.

Equipment includes:

- Two trains of five carbon adsorption leach tanks 3.6 mt. diameter by 3.8 m. high; stepped on the pad and complete with solution up-flow piping. There is the option to by-pass tanks as required.
- CIC area spillage control sumps.

The barren leach solution drains from these trains to the barren solution pond for reagent addition and recirculation.

17.3.6 Carbon Forwarding and Recovery Circuit

The Cerro Caliche processing facility includes carbon stripping, electrowinning, carbon regeneration, and a refinery circuit.

Equipment includes:

- Carbon forwarding pumps.
- Dewatering screen c/w 28 mesh screens.
- Solution tanks (pregnant and barren) with associated pumps.
- Carbon stripping vessels, in-line heaters, heat exchangers, solution pumps.
- Electrowinning cell(s), fume hood, solution pumps, rectifier.
- Secure refinery area complete with bullion furnace, dust collector, slag storage and bullion molds.

17.3.7 Reagent Handling and Storage

Water wells to supply the Project are within close proximity to the proposed processing site. Water is to be utilized for all reagent mixing within the plant and for make-up water to the heap pads to allow for evaporation and wetting of the fresh feed material. The main plant also includes a mixing area containment.

Main Plant required reagents:

- Lime (hydrated), bulk dry
- Sodium cyanide (NaCN), dry super sacs
- Caustic soda, bagged and dry
- Refinery slagging reagents
- Activated carbon (6 x 12 mesh), dry super sacs.

17.3.8 Assay and Metallurgical Laboratory

A fully equipped laboratory is an integral part of the Cerro Caliche Project. Located close to the main process facility, it is equipped with the necessary analytics to provide all required data for the mining operation, main process facility, and environmental considerations.

The laboratory also plays an instrumental role in providing on-time process monitoring, daily production reporting, blast hole sampling, and assaying of all exploration samples.

17.3.9 Water Supply

Water for the Cerro Caliche Project is to be supplied from surface drilled wells within close proximity to the site. Rain and run-off water during the rainy season is also to be diverted and collected. Multiple high head pumps are installed at the water sources to pump water to the plant's fresh-water tank.

The water wells are to supply all facets of the Project, including make-up water from the process (loss from evaporation), reagent mixing and emergency water. No on-site camp facilities are planned.

17.1.1 Air Supply

An air distribution system is included to supply required process air to the main CIC plant facility and instrument air is included for required instrumentation and controls.

18.0 PROJECT INFRASTRUCTURE

The current infrastructure of the Cerro Caliche Project consists of a nearby medium voltage powerline, access roads, and mining operations within close proximity. There is a 14 km gravel access road from the village of Cucurpe, located 40 km southeast of the regional hub of Magdalena de Kino, which, in turn, is located 54 km from the Project. For Years one and two, the site will be powered by two 750 kw generators and thereafter by a 33 kV transmission line for Years three through nine. Usage and installation costs have been discussed with the Commission Federal de Electricity (CFE) for the power line and associated switch gear. The estimated capital and operating costs for power are included within the economic analysis, subsequently in this report.

As multiple active mines and sufficient infrastructure surround the Cerro Caliche site, D.E.N.M. Engineering is of the opinion that there are no major obstacles to building an open pit mine, heap leach facility, and process recovery plant in the proposed area.

18.1 PLANNED INFRASTRUCTURE

Figure 18.1 to Figure 18.3 show the major infrastructure proposed for the Cerro Caliche Project and include the following:

- Crushing plant with associated material handling components.
- Heap leach pads and solution distribution system complete with pumping and piping.
- Heap leach ponds: pregnant, barren, and overflow complete with pumping and piping.
- Carbon-in-column (CIC) adsorption circuit for recovery of gold and silver from pregnant solution stream.
- Carbon stripping system, complete with in-line heaters, heat exchangers, solution pumps, and control system.
- Refinery: bullion furnaces for dorè production including dust collection system.
- Power supply and distribution.
- Assay and metallurgical laboratory.

Additional infrastructure to be installed:

- Gatehouse and security on the main access road.
- Main office for administration, purchasing and technical personnel.
- Warehouse for all mechanical and process plant parts.
- Fuel storage facility.
- Communications: telephone, cellular and internet.
- Other: maintenance buildings, safety and human resources, water and sewage.

There is no on-site housing, as all employees and contractors will commute from the nearby towns. The overall plan view of the Cerro Colice Site is provided in Figure 18.1. Figure 18.2 is a plan view of the leach pad area.

Source: Sonoro Gold (2021)

Sonoro Gold Corp.

Figure 18.2 Leach Pad and Process Area

Source: Sonoro Gold (2023)

18.2 WATER MANAGEMENT

Water usage will be typical of a heap leach operation in the Sonora region of Mexico. The main makeup water requirement demands are determined by the loaded heap pad wetting and irrigation, and evaporation in the area. The expected evaporation rate in the area is high and has been factored into the preliminary water balance.

Annual precipitation in the area is 500 mm and is highest in the summer months with July recording an average 160 mm. Water diversion and management will be important as a means of collection but will also limit the dilution within the pads and ponds of the gold and silver bearing solution.

18.3 ELECTRICAL POWER AND ON-SITE DISTRIBUTION

Power for the Cerro Caliche site for Years one and two will be supplied by two 750 kW generators and a 33 kV transmission line, located approximately 24 km from the site, will supply power for Years three through nine. Discussions with Commission Federal de Electricity (CFE) have outlined plans to install a power line and associated switch gear. A sub-station and series of internal distribution lines will serve to power the crushing circuit, process plant, and offices. The proposed routing of the power line is shown in Figure 18.3.

 Trayecto línea eléctrica punto de conexión CFE a Área de Trituración (23.77 km)

 Image: conexión CFE a Área de Trituración (23.77 km)

 Image: conexión CFE a Área de Trituración (23.77 km)

 Image: conexión CFE a Área de Trituración (23.77 km)

 Image: conexión CFE a Área de Trituración (23.77 km)

 Image: conexión CFE a Área de Trituración (23.77 km)

 Image: conexión CFE a Área de Trituración (23.77 km)

 Image: conexión CFE a Área de Trituración

 Image: cone

Figure 18.3 33kV Power Line Routing

19.0 MARKET STUDIES AND CONTRACTS

19.1 MARKET AND MARKET STUDIES

Gold is a precious metal traded on world markets, with benchmark prices generally based on the London Bullion Market Association, (LBMA Gold Price). Gold has two principal uses: product fabrication and bullion investment. Fabricated gold has a wide variety of end uses, including jewelry (the largest fabrication use), electronics, dentistry, industrial and decorative uses, medals, medallions and official coins. Gold bullion is held primarily as a store of value and as a safeguard against the depreciation of paper assets denominated in fiat currencies.

Due to the size of the gold bullion market and the above-ground inventory of bullion, Sonoro's production will not influence gold prices.

Silver is also a metal that is traded on world markets, with benchmark prices also based on the London Bullion Market Association (LBMA Silver Price). Silver has long been used in the manufacture of coins, ornaments, and jewelry. Silver has the highest known electrical and thermal conductivity of all metals, therefore it is used in fabricating printed electrical circuits and as a vapour-deposited coating for electronic conductors. When silver is alloyed with such elements as nickel or palladium, it is used in electrical contacts.

Like gold, due to the size of the silver bullion market and above ground inventory of bullion, Sonoro's production will not influence the silver price.

The LBMA Gold price is set twice daily at 10:30 (AM) and 15:00 (PM) in an auction independently operated and administered by ICE Benchmark Administration Limited (IBA). The price is set in US dollars per fine troy ounce. The LBMA Silver price auction is independently operated and administered by ICE Benchmark Administration Limited (IBA). The price is set daily in US dollars per troy ounce at 12:00 noon (PM) London time. Table 19.1 summarizes the high and low average annual LBMA PM gold and silver price per ounce, from 2000 to September 30, 2023.

		Gold Price	(USD)	Silver Price (USD)			
Year	High	Low	Cumulative Average	High	Low	Cumulative Average	
2000	312.70	263.80	279.11	5.45	4.57	4.95	
2001	278.85	255.95	271.04	4.82	4.07	4.37	
2002	349.30	277.75	309.73	4.85	4.20	4.60	
2003	416.25	319.90	363.38	5.96	4.37	4.88	
2004	454.20	375.00	409.72	7.83	5.49	6.67	
2005	536.50	411.10	444.74	9.23	6.39	7.32	
2006	725.00	524.75	603.46	14.94	8.83	11.55	
2007	841.10	608.30	695.39	15.82	11.67	13.38	
2008	1,011.25	712.50	871.96	20.92	8.88	14.99	
2009	1,212.50	810.0	972.35	10.51	19.18	14.67	
2010	1,421.00	1,058.00	1,224.53	15.14	28.55	20.19	
2011	1,895.00	1,319.00	1,571.52	26.68	48.70	35.12	
2012	1,791.75	1,540.00	1,668.98	37.23	26.67	31.15	
2013	1,693.75	1,192.00	1,411.23	31.11	18.61	23.79	
2014	1,385.00	1,142.00	1,266.40	22.05	15.28	19.08	
2015	1,295.75	1,049.40	1,160.06	18.23	13.71	15.68	
2016	1,366.25	1,077.00	1,250.74	20.71	13.58	17.14	
2017	1,346.25	1,151.00	1,257.12	18.21	15.22	17.04	
2018	1,354.95	1,178.40	1,268.49	17.52	13.97	15.71	
2019	1,546.10	1,269.60	1,392.60	19.31	14.38	16.21	
2020	1,830.23	1,707.17	1,769.59	22.09	18.80	20.51	
2021	1,842.28	1,753.65	1,799.58	26.39	23.99	25.17	
2022	1,848.96	1,757.36	1,800.80	22.86	20.59	21.75	
2023*	1,976.29	1,883.84	1,931.95	24.80	22.28	23.44	

Table 19.1 Annual High & Low LBMA PM Fix for Gold and Silver

Source: www.kitco.com, LBMA

* Data for 2023 is as of September 30,2023

Sonoro may conduct further work at a later date to evaluate the potential cost benefits of producing gold or silver bullion on site.

19.2 CONTRACTS

At the date of publication, Sonoro has no offtake agreements for gold produced during potential mining operations.

20.0 ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

20.1 ENVIRONMENTAL REGULATORY FRAMEWORK

20.1.1 Mining Law and Regulations

Mining in Mexico is regulated through the Mining Law, approved on June 26, 1992, and modified by decree of December 24, 1996, article 27 of the Political Constitution of the United Mexican States, and includes:

- Article 6.- The exploration, exploitation and benefit of the minerals or substances referred to in this Law are of public utility; their purpose is to contribute to the equitable distribution of public wealth, guarantee the protection of the environment, achieve the balanced and sustainable development of the country and improve the living conditions of the population. Mining Law Reform DOF May 8, 2023
- Article 19 specifies the right to obtain easements, the right to use the water flowing from the mine for both industrial and domestic use, and the right to obtain a preferential right for a concession of the waters of the mine; and
- Articles 27, 37 and 39 establish that exploration, exploitation and beneficiation activities must comply with environmental laws and regulations and must incorporate technical standards in matters such as mining safety, ecological balance and environmental protection.

The Mining Law Regulations of 15 February 1999 repealed the previous Regulations of 29 March, 1993. Article 62 of the regulation requires mining projects to comply with the General Environmental Law, its regulations and all applicable standards.

20.1.2 General Environmental Laws and Regulations

Mexico's environmental protection system is based on the General Law of Ecological Equilibrium and Environmental Protection known as LGEEPA, approved on January 28, 1988 and updated on December 13, 1996.

The Mexican federal authority on the environment is SEMARNAT. On 30 November, 2000, the Federal Public Administration Act was amended to create SEMARNAT, together with the transfer of the fisheries subsector to the Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food, through which greater emphasis was placed on environmental protection and sustainable development.

SEMARNAT is organized into several subsecretariats and the following main divisions:

• **IN CC:** National Institute of Ecology and Climate Change, responsible for the coordination of research and technological and scientific development focused on the protection and conservation of the environment. This institute provides technical and scientific support to SEMARNAT for the development of national environmental policy, to promote and disseminate criteria, methods and technologies for environmental conservation and the sustainable use of natural resources. It also evaluates compliance with the objectives and actions of the National Climate Change Strategy.

- **PROFEPA:** Federal Attorney for Environmental Protection, responsible for law enforcement, public participation and environmental education. PROFEPA is responsible for conducting environmental inspections and negotiating compliance agreements. Voluntary environmental audits, coordinated through PROFEPA, are encouraged under the Ecology Law.
- **CONAGUA:** National Water Commission, responsible for authorizing new water rights, water-related licenses and evaluating tariffs related to water use and discharges.
- **CONAFOR:** National Forestry Commission, responsible for administering sustainable forest development policy; and,
- **CONANP:** National Commission of Natural Protected Areas.

SEMARNAT regulates permits or licenses under the regulations and rules derived from LGEEPA, divided into the following main topics:

- **Hazardous Materials and Waste:** Registration of generators, management plans, authorization to handle hazardous waste, remediation of contaminated soils, import/export permits, environmental risk assessments and approval of accident prevention programs.
- **Forest Management:** Authorizations, notices, reports, inscriptions and records relating to timber and non-timber logging, commercial forest plantations, collection of forest biological resources, phytosanitary certificates, change of land use in forest lands, transport, storage and processing of forest products, forestry technical services and national forest registry,
- **Wildlife:** CITES certificates for import and export, management units for wildlife conservation, extractive and non-extractive use, authorizations, hunting licenses, registration of animal specimens, scientific collections and wildlife conservation,
- **Air:** Authorizations and procedures for operation and environmental compliance, as well as alternative methodologies for air care and quality improvement,
- **Environmental Impact and Risk:** The environmental impact assessment is a management instrument that guarantees, when approved, the sustainable development of investment projects, establishing measures to protect the environment and for the rational use of natural resources; and,
- **Maritime and Terrestrial:** The permit procedures for this area are the instruments to grant the rights of use and exploitation of beaches, federal zones and lands reclaimed from the sea, guaranteeing the protection, conservation and organized and sustainable exploitation for the integral development of these areas.

20.1.3 Regulations Specific to Gold and Silver Mining Projects

The following Official Mexican Standards are specific to gold and silver mining projects:

- **The NOM-023-STPS-2012**, regulates the aspects-conditions related to Mining Safety and Occupational Health in open pit and underground mines issued by the Ministry of Labour,
- **NOM-120-SEMARNAT-2011** specifies environmental protection measures for mining exploration activities in temperate and dry climate zones that would affect xerophyll scrub, tropical forests (deciduous) or coniferous or oak forests. The regulation applies to "direct" exploration projects,

Sonoro Gold Corp.

- **NOM-157-SEMARNAT-2009**, establishes the elements and procedures to implement a Mining Waste Management Plan,
- **NOM-141-SEMARNAT-2003,** establishes the procedures for characterizing tailings, and establishes the criteria and specifications for the preparation and characterization of the site, the construction of the project, the operation and subsequent operation of the tailings dams; and,
- **NOM-155-SEMARNAT-2007** establishes environmental protection requirements for gold and silver leaching systems.

20.1.4 PROFEPA "Clean Industry"

PROFEPA administers a voluntary environmental audit program and certifies companies with a "Clean Industry" designation if they successfully complete the audit process. The voluntary audit program was established by legislative mandate in 1996, with a directive for companies to be certified once they meet a list of requirements including implementation of international best practices, applicable engineering, and preventive corrective measures.

In the Environmental Audit, companies hire auditors accredited by PROFEPA and considered experts in the different areas of environmental law (air, waste and hazardous materials of water, biodiversity, soil, risk, emergency response and environmental management systems). During this audit, called "Industrial Verification," auditors determine whether facilities comply with applicable environmental laws and regulations. If a site passes, it receives designation as "Clean Industry" and can use the Clean Industry logo as a message to consumers and the community that it is fulfilling its legal responsibilities. If a site does not pass, an "Action Plan" must be agreed to correct the irregularities found.

The Action Plan is established between the government and the company based on the suggestions of the Industrial Verification auditor. It creates a time frame and specific actions that a site must take to meet and resolve existing or potential problems. Both parties sign an agreement to complete the process. When a facility successfully completes the Action Plan, it becomes eligible to receive the Clean Industry designation.

PROFEPA believes that this program fosters a better relationship between regulators and industry, provides a green label for companies to promote themselves, and lowers insurance premiums for certified facilities. The most important aspect, however, is ensuring legal compliance using the Action Plan, a guarantee that ISO 14001 and other Environmental Management Systems cannot provide.

20.1.5 Mining Waste

The works and activities of the CC Project consider the generation of mining waste, such as:

- Waste from mining operations: residual rock.
- Residues from mineral processing: spent mineralized material from the heap leaching system.
- Hydrometallurgical processing: spent activated carbon.

The Official Mexican Standard NOM-157-SEMARNAT-2009 establishes the elements and procedures to implement a Mining Waste Management Plan. Waste management measures will be defined and applied to ensure their integral management, considering administrative, economic, technological,

social and environmental aspects. The Mining Waste Management Plan will establish the generation baseline, with the purpose of defining the objectives, actions and goals for the prevention, reduction and use of mining waste. The Waste Management Plan will be an integral part of the Environmental Impact Statement (EIS), which is presented to the environmental authorities.

As explained above, during 2020-2021, a comprehensive geochemical characterization program was carried out to evaluate the environmental stability of the project's residual rock (tepetate) and the leached mineralized material. The program focused on mobility test studies and the generation of acid rock drainage in ten compounds.

The residual rock analysis program was carried out following the Mexican standard NOM-157-SEMARNAT-2009 that requires analyzing each compound (dry base) for ten elements including: antimony, arsenic, barium, beryllium, cadmium, chromium, mercury, silver, lead and selenium.

Since two elements (chromium, lead) of one of the ten compounds, were above the normativity, it was also decided to perform a wet cell analysis (mobility test) for all the compounds, giving a result below the maximum permissible limit of the regulations. Therefore, the elements do not present a toxicity associated with the mobility of the elements in question.

During operations, Mexican regulations require the monitoring, annually, of a composite sample (two samples per month) of mining waste (residual rock and leached mineralized material), until the end of the Project's useful life.

For the analysis of acid-base accounting (ABA), the Official Mexican Standard NOM-141-SEMARNAT-2003, which establishes the criteria for the analysis of mining waste, was taken into consideration; tepetate and spent ore. For the analysis, a representative sample of each of the previously mentioned compounds was taken to determine the acid drainage potential. The results obtained show a null generation of acid drainage. These results are confirmed with the geological and metallurgical information of the Project and therefore, the presence of sulphides for a potential for generating acid drainage in the project is null.

20.1.6 Wastewater

The Project design includes a zero-discharge process for the treatment of mineralized materials. Wastewater will be treated using septic tanks that comply with the specification of the Official Mexican Standard NOM-006-CNA-2022. The effluent from septic tanks will be analyzed according to the Official Mexican Standard NOM-001-ECOL-1996 that establishes the limits of permissible discharge parameters. A wastewater discharge permit from the National Water Commission (CONAGUA) will be requested for the Project, after obtaining the groundwater right concession (requirement to obtain a discharge permit).

20.1.7 Hazardous and Non-Hazardous Waste Management

Non-hazardous waste will be managed in agreement with the municipal service. Garbage containers will be strategically located in the Project facilities, promoting the recycling of wood, cardboard, plastic and scrap.

Hazardous waste management infrastructure is included in the Project to collect, transfer and store the different types of waste that will be generated by the Project activities. The company will be registered

as a generator of Hazardous Waste before SEMARNAT. Hazardous waste shall be identified by specific labels and containers which shall be specific to each type of waste. For the Project, a General Temporary Storage of hazardous waste will be built. The storage of any hazardous waste should not exceed three months in this warehouse. For the transport and final destination of hazardous waste, Sonoro will use an authorized service provider of SEMARNAT that will issue a manifest document for the movements, transport and final destination. Control books will be established to control inputs and outputs. The above actions comply with the legal basis in the Ecology Law and its Regulations on Prevention and Integral Management of Waste.

20.1.8 Other Laws and Regulations

20.1.8.1 Water Resources

Water resources are regulated by the National Water Law of 1 December, 1992 and its regulations, 12 January 1994 (amended by decree of 4 December 1997). In Mexico, the ecological criteria for water quality are established by Regulation CE-CCA-001/89, dated December 2, 1989. These criteria are used to classify water bodies for suitable uses, including drinking water supply, recreational activities, agricultural irrigation, livestock use, aquaculture use, and for the development and preservation of aquatic life. The quality standards listed in the regulation indicate the maximum acceptable concentrations of chemical parameters and are used to establish wastewater effluent limits. Ecological water quality standards are defined for water used for drinking water, protection of aquatic life, agricultural irrigation, and irrigation water and livestock. Discharge limits have been established for some industrial sources, although no specific limits have been developed for mining projects. NOM-001-ECOL-1996, of January 6, 1997, establishes maximum permissible limits of pollutants in wastewater discharges to surface waters and national "goods" (waters under the jurisdiction of CONAGUA).

Daily and monthly effluent limits are listed for discharges into rivers used for agricultural irrigation, urban public use and protection of aquatic life; for discharges into natural and artificial reservoirs used for agricultural irrigation and urban public use; for discharges to coastal waters used for recreation, fishing, navigation and other uses and to estuaries; and discharges to soils and wetlands. Effluent limitations have also been established for discharges to rivers used for agricultural irrigation, for the protection of aquatic life and for discharges to reservoirs used for agricultural irrigation. The specific measures and permissible quality parameters will be mentioned in the document granting discharge permit by CONAGUA.

20.1.8.2 Ecological Resources

In 2000, CONANP (formerly CONABIO, National Commission for the Knowledge and Use of Biodiversity) was created as a decentralized entity of SEMARNAT. As of November, 2001, 127 terrestrial and marine Natural Protected Areas had been proclaimed, including biosphere reserves, national parks, national monuments, flora and fauna reserves and natural resource reserves.

Ecological resources are protected by the General Wildlife Law. NOM-059-ECOL-2010 specifies the protection of Mexico's native flora and fauna. It also includes conservation policies, measures and actions, and a generalized methodology for determining the risk category of a species.

Other laws and regulations include the Forestry Law of 22 December, 1992, as amended on 31 November, 2001 and as amended by the 2022 Reform of Sustainable Forest Development, and the Forestry Law Regulations of 25 September 1998.

20.1.9 Surface Land

The use and exploitation of land properties are subject to the provisions of the agrarian laws. The following government agencies coordinate surface land management:

- **SEDATU** (Secretariat of Agrarian Development; Territorial and Urban): This agency is responsible for promoting the legal enforcement of land ownership, especially in rural areas, and is responsible for developing public policies for access to justice and agrarian development;
- **RAN** (National Agrarian Registry): Controls the land ownership of ejidos and communities (communal owners). This agency is in charge of all legal procedures related to the legalization of land ownership, the issuance of land titles and certificates, the regulation of land authorities (ejidos, communities), the registration and validation of any process related to land ownership; and
- **PA** (Agrarian Fiscal Agency): Social service institution that serves to protect the rights of agrarian individuals. Their services include legal advice for the conciliation of possession or legal representation.

20.1.10 Environmental Regulatory Conditions

Environmental planning in Mexico has its legal basis in the General Law of Ecological Balance and Environmental Protection (LGEEPA) and its Regulation on Ecological Planning (ROE), which establish the objective of ecological zoning of the national territory through a "General Program of General Ecological Planning of the Territory" or "General Ecological Planning Program of the Territory". (POEGT), identifying priority areas of attention and areas with sectoral competence. According to LGEEPA, ecological zoning is defined as an environmental policy instrument with the purpose of zoning land use and contributing to the control and mitigation of environmental problems, to achieve environmental protection and the preservation and sustainable use of natural resources, based on the analysis of deterioration trends and potential uses of each respective area. The POEGT agreement approved by decree was published in the Official Gazette of the Federation on September 7, 2012.

Ecological zoning defined a set of synthetic territorial units, according to the main environmental biophysical factors, such as climate, terrain shape, vegetation and soil. Under this principle, the Mexican territory has been differentiated into 145 units called Environmental Biophysical Units (UAB). For each of these UABs, specific ecological guidelines and strategies have been designated.

Considering the ecological zoning proposed in the POEGT, the Cerro Caliche Project is located in the ecological region 12.30 within number 9 of the UAB that corresponds to the Sierras and Valles del Norte.

According to the POEGT, UAB 9 considers the following:

- Development Guide: Mining and Preservation of Flora and Fauna.
- Development aid: Preventall.

- Development Associates: Livestock.
- Environmental policy: sustainable use and protection.
- Level of priority attention: very low.

The POEGT, in its technical specifications details that in 2008 the environmental status for UAB 9 was considered as: stable to moderately stable with low sectoral conflicts, very low surface of protected areas, moderate soil degradation, low degradation of vegetation, medium degradation for desertification, very low anthropological degradation, average presence of roads-highways, average percentage of urban areas, low percentage of surface water bodies and low population density. Land use is classified as: other vegetation, forest and livestock, available surface water, available groundwater, high percentage functional zone of 58.8, low social marginalization, medium educational index, medium low health index, low overcrowded housing, very low indicator of housing consolidation, medium industrial capitalization, low percentage of economic dependence of the municipality. High percentage of paid jobs per municipality, agricultural activities for commercial purposes, medium importance of mining activity and high importance of livestock activity.

Figure 20.1 provides details of UAB 9.

Sonoro Gold Corp.

Figure 20.1 UAB 9

			110000	R	GION ECOLOGI	CA: 12.30		
				Ur	Unidades Ambientales Biofísicas que la componen:			
					9. Sierras y Valles del Norte			
5	3. 2 1	1V	1					
and the second								
REG. 12.30				La	Localización:			
				Es	Este de Sonora			
	X							
ton NCV 2				2 SI	perficie en	Población Total:	Población	
			kn	1 ² :	78,700 hab	Indigena:		
i the trans					,685.87		Mayo-Yaqui	
A Prioridad de Atención 38 m m 100 ±100 ±200 May Bay Singe Tour Singe Tour								
1939W								
Estado	Actual del	Est	able a Medianamen	te estable. Cont	licto Sectorial B	ajo. Muy baja super	ficie de ANP's. Baja	
Medio	Ambiente	deg	radación de los S	Suelos. Baja de	gradación de la	Vegetación. Media	a degradación por	
2008: Desertificación. La modificación antropogé				ogénica es muy baja. Longitud de Carreteras (km): Media.				
		pob	lación (hab/km2): N	Muy baja. El uso	de suelo es de	e Otro tipo de veg	etación, Forestal y	
		Pec	uario. Con disponi	bilidad de agua	superficial. Con	disponibilidad de	agua subterránea.	
		Por	centaje de Zona Fu	ncional Alta: 58.	3. Muy baja marg	ginación social. Mec	dio índice medio de	
		con	solidación de la vivi	medio de salud. ienda. Medio indi	cador de capitalio	o en la vivienda. Mu zación industrial Ba	ajo porcentaje de la	
		tasa	a de dependencia	económica muni	cipal. Alto porce	ntaje de trabajador	res por actividades	
		rem	uneradas por munic	cipios. Actividad	agrícola con fines	s comerciales. Medi	a importancia de la	
		activ	vidad minera. Alta in	nportancia de la a	la actividad ganadera.			
Escena	ario al 2033:		Medianamente e	stable a inestab	le			
Polític	a Amhiental:		Anrovechamien	to Sustentable				
Priorid	lad de Atencie	ón:	Muy baia	to oustentable				
IIAB	Rectores	del	Coadvuvantes	Asociados de	Otros sector	es Estratonias so	octoriales	
0.12	desarrollo		del desarrollo	desarrollo	de interés			
9	Minería-		Forestal	Ganadería	Industria	1, 2, 3, 4, 5, 6	, 7, 8, 9, 10, 11, 12,	
	Preservación	de				13, 14, 15, 15	BIS, 16, 17, 28, 29,	
	FIOTA y Faulta	a				31, 33, 37, 42,	43, 44	
Estrategias. UAB 9					HADO			
	ervación	- T	1 Conservación in	Estrategias	UAB 9	ersidad		
A) Pres	servación		1. Conservación in a 2. Recuperación de	Estrategias situ de los ecosis especies en ries	UAB 9 temas y su biodiv go.	ersidad.		
A) Pres	servación		 Conservación in s Recuperación de Conocimiento, an 	Estrategias situ de los ecosis especies en ries nálisis y monitore	UAB 9 temas y su biodivo go. o de los ecosistem	ersidad. nas y su biodiversida	ad.	
A) Pres	servación Aprovechamie	nto	 Conservación <i>in s</i> Recuperación de Conocimiento, an Aprovechamiento 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de e	UAB 9 temas y su biodiv go. o de los ecosistem ecosistemas, espe	ersidad. nas y su biodiversid: ecies, genes y recur:	ad. sos naturales.	
A) Pres B) A sustent	servación Aprovechamie table	nto	 Conservación in a Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de e o sustentable de l	UAB 9 temas y su biodivi go. o de los ecosistem ecosistemas, espe os suelos agrícola	ersidad. nas y su biodiversida ecies, genes y recur as y pecuarios.	ad. sos naturales.	
A) Pres B) /	servación Aprovechamie table	nto	 Conservación in s Recuperación de Conocimiento, an Aprovechamiento Aprovechamiento Modernizar la infr 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo sustentable de la raestructura hidro	UAB 9 temas y su biodivi go. o de los ecosistem ecosistemas, espe os suelos agrícola agrícola y tecnifici	ersidad. nas y su biodiversid: ecies, genes y recur as y pecuarios. ear las superficies ag	ad. sos naturales. grícolas.	
A) Pres	servación Aprovechamie table	nto	Conservación in s Recuperación de Conocimiento, an Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo sustentable de l raestructura hidro o sustentable de l	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest	ersidad. nas y su biodiversid ecies, genes y recun as y pecuarios. car las superficies aç tales.	ad. sos naturales. grícolas.	
A) Pres	servación Aprovechamie table	nto	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los 	Estrategias situ de los ecosis especies en ries nálisis y monitoren o sustentable de l po sustentable de l raestructura hidro o sustentable de l o sustentable de l	UAB 9 temas y su biodivi go. o de los ecosistem ecosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales.	ersidad. nas y su biodiversid: acies, genes y recur as y pecuarios. ar las superficies aç tales.	ad. sos naturales. grícolas.	
A) Pres B) / sustent	Aprovechamie table	nto	 Conservación <i>in s</i> Recuperación de Conocimiento, an Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo sustentable de l raestructura hidro o sustentable de l s servicios ambier brio de las cuenc	UAB 9 temas y su biodiv go. o de los ecosistem ecosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales.	ersidad. nas y su biodiversid ecies, genes y recun as y pecuarios. ar las superficies aç tales. breexplotados.	ad. sos naturales. grícolas.	
A) Pres B) A sustent C) Pro	Aprovechamie table otección de os naturales	nto	 Conservación in s Recuperación de Conocimiento, an Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo sustentable de la raestructura hidro o sustentable de la servicios ambien birio de las cueno rra su protección,	UAB 9 temas y su biodiv go. o de los ecosisten cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest tales. as y aculferos sol el uso del agua e	ersidad. nas y su biodiversida ecies, genes y recurs as y pecuarios. ear las superficies ag tales. breexplotados.	ad. sos naturales. grícolas. encas y acuíferos.	
A) Pres B) // sustent C) Pro recurso	servación Aprovechamie table otección de os naturales	nto	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en o 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de l raestructura hidro o sustentable de l servicios ambien brio de las cueno ra su protección, condiciones adeo	UAB 9 temas y su biodivi go. o de los ecosistem ecosistemas, espe os suelos agrícola agrícola y tecnific os recursos foresi itales. as y aculferos sol el uso del agua e uadas de funcion	ersidad. nas y su biodiversid: acies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cur namiento las presa	ad. sos naturales. grícolas. encas y acuíferos. es administradas por	
A) Pres B) A sustent C) Pro recurso	Aprovechamie table otección de os naturales	nto	 Conservación in s Recuperación de Conocimiento, an Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en co CONAGUA. 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de la raestructura hidro o sustentable de la servicios ambien ibrio de las cueno ara su protección, condiciones adeo	UAB 9 temas y su biodiv go. o de los ecosistem ecosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y acuíferos sol el uso del agua e uadas de funcior	ersidad. nas y su biodiversid ecies, genes y recun as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cu namiento las presa	ad. sos naturales. grícolas. encas y aculferos. is administradas por	
A) Pres B) / sustent C) Pro	servación Aprovechamie table otección de os naturales	nto	 Conservación <i>in</i> 3 Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de la raestructura hidro o sustentable de la servicios ambien ibrio de las cueno ra su protección, condiciones adeco ps ecosistemas.	UAB 9 temas y su biodiv go. o de los ecosisten ecosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest tales. as y aculferos sol el uso del agua e uadas de funcion	ersidad. nas y su biodiversida ecies, genes y recur as y pecuarios. ear las superficies ag tales. breexplotados. en las principales cu namiento las presa	ad. sos naturales. grícolas. encas y acuíferos. is administradas por	
A) Pres B) A sustent C) Pro recurso	servación Aprovechamie table otección de os naturales	nto los	 Conservación in s Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en o CONAGUA. Protección de los Racionalizar el to 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de l raestructura hidro o sustentable de l e servicios ambier brio de las cuenc ara su protección, condiciones adec	UAB 9 temas y su biodiv go. o de los ecosistem ecosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y acuiferos sol el uso del agua e uadas de funcion	ersidad. nas y su biodiversid ecies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cu namiento las presa	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes.	
A) Pres B) / sustent C) Pro recurso	Aprovechamie table otección de os naturales	nto	 Conservación in s Recuperación de Conocimiento, an Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el qui Racionalizar el qui 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de la raestructura hidro o sustentable de la servicios ambien brio de las cuenc ra su protección, condiciones adec os ecosistemas. uso de agroquími e ecosistemas for	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y aculferos sol el uso del agua e uadas de funcior cos y promover el estales y suelos a	ersidad. nas y su biodiversid acies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cu namiento las presa I uso de biofertilizan	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes.	
A) Pres B) A sustent C) Pro recurso	servación Aprovechamie table otección de os naturales tauración	nto	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Nodernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el tr Restauración de 	Estrategias situ de los ecosis especies en ries hálisis y monitore o sustentable de lo o sustentable de l raestructura hidro o sustentable de l servicios ambier brio de las cuenc ra su protección, condiciones adec os ecosistemas. uso de agroquími e ecosistemas for	UAB 9 temas y su biodiv go. o de los ecosisten ecosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y aculferos sol el uso del agua e uadas de funcion cos y promover el estales y suelos a	ersidad. nas y su biodiversid ecies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cu namiento las presa l uso de biofertilizan agrícolas.	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes.	
A) Pres B) A sustent C) Pro recurso D) Res	Aprovechamie table otección de os naturales tauración	nto	 Conservación <i>in</i> : Recuperación de Conocimiento, an Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en c CONAGUA. Protección de los Racionalizar el mante Restauración de 	Estrategias situ de los ecosis especies en ries hálisis y monitore o sustentable de lo o sustentable de lo sustentable de lo sustentable de lo sustentable de lo sustentable de lo sustentable de lo sustentable de lo servicios ambier ibrio de las cuenco ra su protección, condiciones adeco os ecosistemas. uso de agroquími e ecosistemas for pos productos del	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest tales. as y aculferos sol el uso del agua e uadas de funcion cos y promover el estales y suelos a Servicio Geológia	ersidad. nas y su biodiversid acies, genes y recur as y pecuarios. car las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas.	ad. sos naturales. grícolas. encas y acuíferos. es administradas por tes.	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent	Aprovechamie table otección de os naturales tauración	nto los nto sos	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el to Restauración de los Aprotección de los 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de la raestructura hidro o sustentable de la servicios ambien brio de las cueno ra su protección, condiciones adec es ecosistemas. uso de agroquími e ecosistemas for ps productos del amiento sustenta	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest tales. as y aculferos sol el uso del agua e uadas de funcior cos y promover el estales y suelos a Servicio Geológi ble de los recurso	ersidad. nas y su biodiversid acies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cu namiento las presa l uso de biofertilizan agrícolas.	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes.	
A) Pres B) A sustent C) Pro recurso D) Res E) A sustent natural	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs	nto los nto sos no	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Nodernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el ta Restauración de los Social y al aprovecha 	Estrategias situ de los ecosis especies en ries hálisis y monitore o sustentable de lo o sustentable de l raestructura hidro o sustentable de l a servicios ambier ibrio de las cuenc ara su protección, condiciones adec os ecosistemas. uso de agroquími e ecosistemas for os productos del amiento sustenta el marco normatir	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest tales. as y acuíferos sol el uso del agua e uadas de funcior cos y promover el estales y suelos a Servicio Geológi ble de los recurso ro ambiental aplic	ersidad. nas y su biodiversid: acies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des is naturales no renov	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes. earrollo económico y vables. les mineras, a fin de	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent natural renoval	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles	nto los nto sos y	 Conservación <i>in</i> : Recuperación de Conocimiento, an Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el or Racionalizar el or Racionalizar el or Aplicación de los Social y al aprovecha Social y al aprovecha 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de lo raestructura hidro o sustentable de lo servicios ambien brio de las cuenc ra su protección, condiciones adec os ecosistemas. uso de agroquími e ecosistemas for os productos del amiento sustenta el marco normatir ría sustentable.	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y aculferos sol el uso del agua e uadas de funcior cos y promover el estales y suelos a Servicio Geológi ble de los recurso o ambiental aplic	ersidad. nas y su biodiversid. acies, genes y recur as y pecuarios. car las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des as naturales no renor cable a las actividad	ad. sos naturales. grícolas. encas y acuíferos. es administradas por tes. arrollo económico y vables. les mineras, a fin de	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent naturale renoval activida	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic	nto los nto sos no y cas	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el u Racionalizar el u Restauración de los Social y al aprovecha bis. Consolidar or promover una miner 	Estrategias situ de los ecosis especies en ries hálisis y monitore o sustentable de lo o sustentable de la raestructura hidro o sustentable de la servicios ambien brio de las cueno ra su protección, condiciones adec e ecosistemas. uso de agroquími e ecosistemas for cos productos del amiento sustenta el marco normativ ría sustentable. conversión do la	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest tales. as y aculferos sol el uso del agua e uadas de funcion cos y promover el estales y suelos a Servicio Geológi ble de los recurso ro ambiental aplic	ersidad. nas y su biodiversida acies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cu namiento las presa I uso de biofertilizan agrícolas. co Mexicano al des os naturales no renor cable a las actividad	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes. tes.	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent natural renoval activida de	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic producción	nto los nto sos no y cas y	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el ta Restauración de los Social y al aprovecha bis. Consolidar el promover una miner Promover la regentra el contra el contrecontra el contra el contra el contra el contra el contra el	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de l raestructura hidro o sustentable de l a servicios ambier ibrio de las cuenc ara su protección, condiciones adec os ecosistemas. uso de agroquími e ecosistemas for os productos del amiento sustenta el marco normativ ría sustentable. conversión de in	UAB 9 temas y su biodiv go. o de los ecosistem ecosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y acuíferos sol el uso del agua e uadas de funcion cos y promover el estales y suelos a Servicio Geológia ble de los recurso ro ambiental aplic dustrias básicas an en los menental	ersidad. nas y su biodiversid. acies, genes y recur as y pecuarios. car las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des as naturales no renov cable a las actividad (textil-vestido, cuerro	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes. earrollo económico y vables. les mineras, a fin de o-calzado, juguetes,	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent natural renoval activida de servicio	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic producción	nto los nto sos no y cas y	 Conservación <i>in</i> 3 Recuperación de Conocimiento, an Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el or Racionalizar el or Aplicación de los Social y al aprovecha Dis. Consolidar or promover una miner Promover la re entre otros), a fin de 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de lo raestructura hidro o sustentable de la servicios ambien ibrio de las cuenc ra su protección, condiciones adec es ecosistemas. uso de agroquími e ecosistemas for os productos del amiento sustenta el marco normativ ría sustentable. conversión de in e que se posicione	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y aculferos sol el uso del agua e uadas de funcior cos y promover el estales y suelos a Servicio Geológia ble de los recurso ro ambiental aplic dustrias básicas en en los mercado	ersidad. nas y su biodiversid. acies, genes y recur as y pecuarios. car las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des os naturales no renor cable a las actividad (textil-vestido, cuer os doméstico e interr	ad. sos naturales. grícolas. encas y acuíferos. encas y acuíferos. es administradas por tes. earrollo económico y vables. les mineras, a fin de o-calzado, juguetes, nacional.	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent naturale renoval activida de servicio	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic producción os	nto los nto sos no y cas y	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Naloración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el transmission de los Racionalizar el transmission de los Robicación de los Robicación de los Racionalizar el transmission de los Racionalizar el transmission de los Robicación de los	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de la raestructura hidro o sustentable de la servicios ambien is servicios ambien is servicios ambien as u protección, condiciones adec as ecosistemas. uso de agroquími e ecosistemas for pos productos del amiento sustenta el marco normatin ría sustentable. conversión de in e que se posiciono calamiento de la	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest tales. as y aculferos sol el uso del agua e uadas de funcion cos y promover el estales y suelos a Servicio Geológi ble de los recurso ro ambiental aplic dustrias básicas en en los mercado producción hacia	ersidad. nas y su biodiversida acies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des as naturales no renor cable a las actividad (textil-vestido, cuerro s doméstico e interna a manufacturas de	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes. arrollo económico y vables. les mineras, a fin de o-calzado, juguetes, nacional. alto valor agregado	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent naturalo renoval activida de servicio	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic producción os	nto los nto sos no y cas y	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el ta Racionalizar el ta Restauración de los social y al aprovecha bis. Consolidar el ta promover una miner Promover la rei entre otros), a fin de indumotriz, electrór 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de la raestructura hidro o sustentable de la servicios ambier ibrio de las cueno ara su protección, condiciones adeo os ecosistemas. uso de agroquími e ecosistemas for os productos del amiento sustenta el marco normativ ría sustentable. conversión de in e que se posiciono calamiento de la nica, autopartes,	UAB 9 temas y su biodiv go. o de los ecosistem ecosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y aculferos sol el uso del agua e uadas de funcion cos y promover el estales y suelos a Servicio Geológi ble de los recurso no ambiental aplic dustrias básicas en en los mercado producción hacia entre otras).	ersidad. nas y su biodiversid. acies, genes y recur as y pecuarios. car las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des as naturales no renor cable a las actividad (textil-vestido, cuerro a manufacturas de	ad. sos naturales. grícolas. encas y acuíferos. encas y acuíferos y acuíferos. encas y acuíferos y acuífero	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent naturale renoval activida de servicio	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic producción os II. Dirigidas a	nto los nto sos y y as y	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el or Racionalizar el or Racionalizar el or Aplicación de los social y al aprovecha bis. Consolidar or promover una miner Promover la reientre otros), a fin de Impulsar el eso (automotriz, electrór 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de la raestructura hidro o sustentable de la servicios ambien brio de las cuenc ra su protección, condiciones adec as ecosistemas. uso de agroquími e ecosistemas for consectos del amiento sustenta el marco normativ ría sustentable. conversión de in e que se posiciono calamiento de la nica, autopartes, r ema social e info	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y aculferos sol el uso del agua e uadas de funcior cos y promover el estales y suelos a Servicio Geológi ble de los recurso ro ambiental aplic dustrias básicas en en los mercado producción hacia entre otras). aestructura urba	ersidad. nas y su biodiversida acies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des es naturales no renor cable a las actividad (textil-vestido, cuerro s doméstico e interna a manufacturas de ana	ad. sos naturales. grícolas. encas y acuíferos. encas y acuíferos y acuíferos. encas y acuíferos y acuíferos y vables. encas a fin de o-cealzado, juguetes, nacional. alto valor agregado	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent natural renoval activida de servicio Grupo C) Aqui	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic producción os II. Dirigidas a a y Saneamier	nto los nto sos no y cas y	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el or Roporte de la provecha Aplicación de los Social y al aprovecha Promover una miner Promover la resentre otros), a fin de Impulsar el esoc (automotriz, electrór Joramiento del siste Consolidar la ca 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo postentable de la raestructura hidro o sustentable de la servicios ambier is servicios ambier is servicios ambier as u protección, condiciones adec pos ecosistemas. uso de agroquími e ecosistemas for pos productos del amiento sustenta el marco normativ ría sustentable. conversión de in e que se posiciono calamiento de la nica, autopartes, ema social e infr lidad del agua en	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest tales. as y acuíferos sol el uso del agua e uadas de funcior cos y promover el estales y suelos a Servicio Geológi ble de los recurso ro ambiental aplic dustrias básicas en en los mercado producción hacia entre otras). aestructura urba	ersidad. nas y su biodiversidi acies, genes y recur as y pecuarios. car las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des is naturales no renor cable a las actividad (textil-vestido, cuerro cable a las actividad (textil-vestido, cuerro a manufacturas de ana al del recurso hídrico	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes. tes. arrollo económico y vables. les mineras, a fin de o-calzado, juguetes, nacional. alto valor agregado	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent natural renoval activida de servicio Grupo C) Agu	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic producción os II. Dirigidas a a y Saneamier	nto los nto sos y cas y l me, nto	 Conservación <i>in</i> 3 Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el traditional de los Aplicación de los Aplicación de los Consolidar el traditional de los Promover una miner Promover la reientre otros), a fin de Impulsar el eso (automotriz, electrón Consolidar la ca Posicionar el ter 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de lo raestructura hidro o sustentable de la servicios ambier ibrio de las cuenc ra su protección, condiciones adec os ecosistemas. uso de agroquími e ecosistemas for os productos del amiento sustenta el marco normativ ría sustentable. conversión de in e que se posiciono calamiento de la nica, autopartes, lidad del agua com	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y aculferos sol el uso del agua e uadas de funcior cos y promover el estales y suelos a Servicio Geológia ble de los recurso ro ambiental aplic dustrias básicas en en los mercado producción hacia entre otras). aestructura urba	ersidad. nas y su biodiversida acies, genes y recur as y pecuarios. car las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des os naturales no renor cable a las actividad (textil-vestido, cuerro s doméstico e interna a manufacturas de ana al del recurso hídrico tégico y de securida	ad. sos naturales. grícolas. encas y acuíferos. encas y acuíferos y acu encas y acuíferos. encas y acuíferos y acu encas y acu enca	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent natural/ renoval activida de servicio Grupo C) Agu	servación Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic producción os II. Dirigidas a a y Saneamie	nto los nto sos no y cas y l me	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el tr Racionalizar el tr Racionalizar el tr Restauración de los social y al aprovech bis. Consolidar o promover una miner Promover la resentre otros), a fin de Impulsar el esocial (automotriz, electrór goramiento del sistema el transitiona del sistema el t	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de la raestructura hidro o sustentable de la servicios ambien is servicios ambien is servicios ambien as u protección, condiciones adec as ecosistemas. uso de agroquími e ecosistemas for os productos del amiento sustenta el marco normativ ría sustentable. conversión de in e que se posiciono calamiento de la nica, autopartes, ema social e infr lidad del agua como	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest tales. as y aculferos sol el uso del agua e uadas de funcion cos y promover el estales y suelos a Servicio Geológi ble de los recurso ro ambiental aplic dustrias básicas en en los mercado producción hacia entre otras). raestructura urba la gestión integra	ersidad. nas y su biodiversida acies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des as naturales no renor cable a las actividad (textil-vestido, cuerro sable a las actividad (textil-vestido, cuerro sable a las actividad a manufacturas de ana al del recurso hídrico tégico y de segurida	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes. arrollo económico y vables. les mineras, a fin de o-calzado, juguetes, nacional. alto valor agregado	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent naturale renoval activida de servicio Grupo C) Agui D) In	Aprovechamie table otección de os naturales tauración tauración Aprovechamie table de recurs es bles ades económic producción os II. Dirigidas a a y Saneamier fraestructura	nto los nto sos y y l me nto y	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el or Racionalizar el or Racionalizar el or Racionalizar el or Roscial y al aprovecha bis. Consolidar or promover una miner Promover la rei entre otros), a fin de cautomotriz, electrór joramiento del siste Consolidar la ca Posicionar el ter Generar e imputational 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de la constantable de la constantable. conversión de in calamiento de la nica, autopartes, e ema social e infi lidad del agua comu- ulsar las condicio	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y aculferos sol el uso del agua e uadas de funcior cos y promover el estales y suelos a Servicio Geológi ble de los recurso ro ambiental aplic dustrias básicas en en los mercado producción hacia entre otras). aestructura urba o un recurso estra nes necesarias p	ersidad. nas y su biodiversid. acies, genes y recur as y pecuarios. car las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des as naturales no renor cable a las actividad (textil-vestido, cuerro cable a las actividad (textil-vestido, cuerro cable a las actividad (textil-vestido, cuerro cable a las actividad (textil-vestido, cuerro cable a las actividad ama al del recurso hídrico tégico y de segurida para el desarrollo d	ad. sos naturales. grícolas. encas y acuíferos. encas y acuíferos. s administradas por tes. es administradas por tes. es mineras, a fin de o-calzado, juguetes, nacional. alto valor agregado	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent natural renoval activida de servicio C) Agui D) In equipar	Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic producción os II. Dirigidas a a y Saneamier fraestructura miento urbano	nto los nto sos y cas y l me nto y y y y y y	 Conservación <i>in</i> 3 Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Modernizar la infr Aprovechamiento Valoración de los Propiciar el equili Reglamentar para Mantener en or CONAGUA. Protección de los Racionalizar el transito Aplicación de los Racionalizar el transito Aplicación de los Social y al aprovecha Dromover una miner Promover la reientre otros), a fin de Inpulsar el esocial y al aprovecha Consolidar a ca Promover una miner Bromover la reientre otros), a fin de Indentre el esocial y al aprovecha Desicionar el ter Insciento del sistema de la servicionar el ter Consolidar la ca Posicionar el ter Generar e impumento del sistema de la servicionar el ter 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de lo o sustentable de la raestructura hidro o sustentable de la servicios ambier brio de las cuenc ra su protección, condiciones adec os ecosistemas. uso de agroquími e ecosistemas for os productos del amiento sustenta el marco normativ ría sustentable. conversión de in e que se posiciono calamiento de la nica, autopartes, lidad del agua em ma del agua como uras, competitivas	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest itales. as y aculferos sol el uso del agua e uadas de funcior cos y promover el estales y suelos a Servicio Geológi ble de los recurso co ambiental aplic dustrias básicas en en los mercado producción hacia entre otras). aestructura urba o un recurso estra nes necesarias p , sustentables, bio	ersidad. nas y su biodiversida acies, genes y recur as y pecuarios. car las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des is naturales no renor cable a las actividad (textil-vestido, cuer os doméstico e interna a manufacturas de ana al del recurso hídrico tégico y de segurida bara el desarrollo d en estructuradas y n	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes. earrollo económico y vables. les mineras, a fin de o-calzado, juguetes, nacional. alto valor agregado o, ad nacional. e ciudades y zonas nenos costosas.	
A) Pres B) // sustent C) Pro recurso D) Res E) // sustent naturale renoval activida de servicio Grupo C) Agu D) In equipar regiona	servación Aprovechamie table otección de os naturales tauración Aprovechamie table de recurs es bles ades económic producción os II. Dirigidas a a y Saneamier fraestructura miento urbanc al	nto los nto sos no y cas y l me nto	 Conservación <i>in</i> : Recuperación de Conocimiento, ar Aprovechamiento Aprovechamiento Modernizar la infr Aprovechamiento Modernizar la infr Aprovechamiento Naprovechamiento Valoración de los Propiciar el equili Reglamentar pa Mantener en or CONAGUA. Protección de los Racionalizar el or Racionalizar el or Racionalizar el or Racionalizar el or Roscial y al aprovech bis. Consolidar or promover una miner Promover la resentre otros), a fin de Impulsar el esor (automotriz, electrór poramiento del sistema Consolidar la ca Posicionar el terr Generar e impumetropolitanas segui 	Estrategias situ de los ecosis especies en ries nálisis y monitore o sustentable de la raestructura hidro o sustentable de la servicios ambier is servicios ambier is servicios ambier as u protección, condiciones adec as ecosistemas. uso de agroquími e ecosistemas for os productos del amiento sustenta el marco normatir ría sustentable. conversión de in e que se posiciono calamiento de la nica, autopartes, usa, competitivas	UAB 9 temas y su biodiv go. o de los ecosistem cosistemas, espe os suelos agrícola agrícola y tecnific os recursos forest atales. as y aculferos sol el uso del agua e uadas de funcion cos y promover el estales y suelos a Servicio Geológi ble de los recurso to ambiental aplic dustrias básicas en en los mercado producción hacia entre otras). taestructura urba la gestión integra o, sustentables, bio	ersidad. nas y su biodiversida acies, genes y recur as y pecuarios. ar las superficies ag tales. breexplotados. en las principales cur namiento las presa l uso de biofertilizan agrícolas. co Mexicano al des as naturales no renor cable a las actividad (textil-vestido, cuero cable a las actividad (textil-vestido, cuero cable a las actividad (textil-vestido, cuero a manufacturas de ana al del recurso hídrico tégico y de segurida bara el desarrollo d en estructuradas y n	ad. sos naturales. grícolas. encas y acuíferos. is administradas por tes. arrollo económico y vables. les mineras, a fin de o-calzado, juguetes, nacional. alto valor agregado o, ad nacional. e ciudades y zonas nenos costosas.	

	económicas y promover la articulación de programas para optimizar la aplicación de recursos públicos que conlleven a incrementar las oportunidades de acceso a servicios en el medio rural y reducir la pobreza. 34. Integración de las zonas rurales de alta y muy alta marginación a la dinámica del desarrollo nacional. 37. Integrar a mujeres, indígenas y grupos vulnerables al sector económico-productivo en núcleos agrarios y localidades rurales vinculadas.
Grupo III. Dirigidas al fo	ortalecimiento de la gestión y la coordinación institucional 42. Asegurar la definición y el respeto a los derechos de propiedad rural.
B) Planeación del Ordenamiento Territorial	 43. Integrar, modernizar y mejorar el acceso al catastro rural y la información agraria para impulsar proyectos productivos. 44. Impulsar el ordenamiento territorial estatal y municipal y el desarrollo regional mediante acciones coordinadas entre los tres órdenes de gobierno y concertadas con la sociedad civil.

The POEGT considers that, in 2012 the environmental status for UAB 9 was stable to moderately stable with a projection for 2033 to move to moderately stable to unstable. Based on the scenarios (context 2008, 2012 and 2033) and based on the ecological guidelines, 26 ecological strategies were established for UAB 9.

Escenario al 2033:	Medianamente estable a inestable

These sectoral strategies describe the actions to obtain the environmental sustainability of the territory and are divided into three groups:

- Group I: Objectives to achieve the sustainability of the territory.
- Group II: Objectives to improve the social system and urban infrastructure.
- Group III: Aims to strengthen institutional management and coordination.

Within these sectoral strategies, strategies number 15 and 15 bis are relevant to the Cerro Caliche Project because they make the following statements: 15) "Use the products of the Mexican Geological Survey for economic and social development and the sustainable use of non-renewable natural resources"; and 15bis) "Consolidate the environmental regulatory framework applicable to mining activities to promote sustainable mining".

This is defined in Group I, a group that establishes strategies that aim to achieve the sustainable development of the territory. Therefore, current regulations for mining operations indicate that the Cerro Caliche Project is compatible with the sectoral strategies defined for UAB 9.

20.2 Environmental Studies, Permitting, and Social Impact

The Project is located in the municipality of Cucurpe in the State of Sonora, within the Cerro Prieto ranch. The main access is via 40 km of paved road between Magdalena de Kino and the town of Cucurpe, then approximately 14 km of gravel road. It is also located about 20 km from the abandoned Santa Gertrudis mine, and 10 km from the Las La Mercedes-Klondike mine project. Figure 20.2 shows the location of the Cerro Calice Project, in relation to the surrounding communities.

Figure 20.2 Cerro Caliche Project Location Map

According to information from the National Commission of Natural Protected Areas (CONANP, 2014), there are no protected areas near the Project, nor within a radius of 70 km from the Project.

In December 2020, Sonoro received authorization from the Ministry of Environment and Natural Resources (SEMARNAT) to build new roads, build drilling rigs, and drill 258 RC and core holes to continue exploration of the Cerro Caliche deposit.

In April 2023, Sonoro received authorization from preventive report 3 by SEMARNAT to build additional new roads, with a plan of 133 holes, occupying a total area of 17.22 hectares.

20.2.1 Environmental Studies, Baseline Studies and Background Information

During 2020 and 2021, Sonoro, in coordination with *HRL Servicio Ambiental S.A. de C.V.* (HRL), *A-GEOMMINING, Morales Geophysics and ALS-Indequim*, conducted baseline studies for water, biodiversity, climate, geohydrology, geology, geomorphology, soil characterization, mining waste geochemistry (waste rock and leached mineralized material), and social-economic aspects. Environmental baseline studies were conducted over 7,000 hectares to determine the actual conservation status. A social-economic study was done in the nearby communities of Cucurpe and Magdalena.

20.2.1.1 Baseline Studies Performed at the CC Project

These studies were conducted on more than 7,000 hectares to determine the actual conservation status in the Project area and assess potential environmental and social impact risks. The social and economic impact assessment was conducted in the nearby communities of Cucurpe and Magdalena.

20.2.1.2 Acid Drainage

ABA and mobility tests on waste and mineral rock were conducted by ALS Indequim S.A. de C.V.; the tests were conducted according to the parameters of Mexican regulations and international standards. With this purpose three PQ core samples of mineral and seven PQ core samples of waste rock (representative of areas with a large proportion of mineable rock), were analyzed to determine their potential for acid rock drainage and metal liberation. Based on the test result, both waste and mineral can be classified as non-acid generating, with metals concentrations in leachate that are within the Mexican and international regulatory limits and guidelines.

20.2.1.3 Water Baseline

Analitica del Noroeste conducted water sampling and characterization from water collected in from seven sites, five underground and two surface, including two water wells that could serve as potable water sources, all inside the study area. The results in general show good quality water, with some impact by the cattle farming in the area.

20.2.1.4 Soil Baseline

Analitica del Noroeste conducted soil characterization studies on 18 soil samples from 9 sampling sites, all inside the study area. In general, the study shows that the soil in the area has no environmentally harmful elements.

20.2.1.5 Biodiversity Baseline

The analysis of vegetation within the thematic area with respect to land use change and authorization in terms of environmental impact, focused on the type of vegetation to be removed as a result of the Project activities.

The Project is surrounded by secondary oak forest vegetation, but the main classification of the proposed Project area resulting from the field analysis is microphylum desert scrub (MDM on the map in Figure 20.3). The total floristic inventory of the site was compared with the Official Standard NOM-

059-SEMARNAT-2010 (D.O.F., 2010) that determines the species and subspecies of flora and fauna that are: a) in danger of extinction; (b) threatened and (c) those subject to special protection; to identify those specimens with some state of risk. In the case of the Project area there is only one species included in the Official Standard, namely the Saguaro (Carnegiea gigantea), which is subject to special protection.

Strata Considered

- **Arboreal.** Stratum formed by elements of woody and elevated trunk, with branches at a certain height from the ground; with a single shaft and well-formed crown of more than three metres high.
- **Shrub and Cacti.** Formed by perennial plants, with lignified stem, but without predominant trunk, that is, with branching from the base, usually less than three metres high.
- **Herbaceous**. Stratum represented by specimens of non-woody or small woody plants, usually of short stature, which die after fruiting.

Vegetation Affected

- Microphyllous Desert Scrub (MDM).
- Oak Forest (BQ). Secondary.

Figure 20.3 Vegetation Types of the Cerro Caliche Project

Source: HRL (2021)

Floristic Inventory

• **Saguaro (Carnegia Gigantea).** The only species listed as subject to special protection in NOM-059-SEMARNAT-2010. Table 20.1 lists the species of trees, shrubs, cactus and herbaceous plants that may be subject to special protection.

No.	Common name	Scientific Name	Stratum
1	Cumaro	Celtis reticulata	Tree
2	Mesquite	Prosopis velutina	Tree
3	Encino	Quercus durifolia	Tree
4	Mauto	Lysiloma divaricatum	Tree
1	Lechugilla	Agave lechuguilla	Shrubby
2	Estafiate	Ambrosia confertiflora	Shrubby
3	Chicurilla	Ambrosia cordifolia	Shrubby
4	Pintapan	Anode cristata	Shrubby
5	Mulatto stick	Bursera laxiflora	Shrubby
6	Gediondilla	Cassia occidentalis	Shrubby
7	Garambullo	Celtis pallida	Shrubby
8	Solitude	Coursetia glandulosa	Shrubby
9	Salvia	Croton sonorae	Shrubby
10	Palmilla	Dasylirion wheeleri	Shrubby
11	Tarachico	Dodonaea viscosa	Shrubby
12	White branch	Floury encephaly	Shrubby
13	Chilicote	Erythrina flabelliformis	Shrubby
14	Ocotillo	Fouquieria splendens	Shrubby
15	Torote papelillo	Jatropha cordata	Shrubby
16	Sangregado	Jatropha cuneata	Shrubby
17	Cosahui	Krameria parvifolia	Shrubby
18	Salicieso	Lycium andersonii	Shrubby
19	Gatuño	Mimosa laxiflora	Shrubby
20	Manioc	Yucca schottii	Shrubby
21	Bachata	Ziziphus obtusifolia	Shrubby
1	Saguaro	Carnegiea gigantea	Cactus
2	Old man	Mamillaria grahamii	Cactus
3	Nopal	Opuntia engelmannii	Cactus
4	Civiri	Opuntia thurberi	Cactus
5	Pitaya	Stenocereus thurberi	Cactus
1	Bad woman	Solanum hindsianum	Herbaceous
2	Buffel Zacate	Cenchrus cilliaris	Herbaceous
3	Zacate liebrero	Bouteloua simplex	Herbaceous
4	Mallow	Malvastrum sp	Herbaceous

Table 20.1 Floristic Inventory of Project (subject to CUSTF AND MIA)

Source: HRL (2021)

According to the floristic inventory obtained in the site through representative sampling, a total of 35 species of perennial terrestrial vascular flora were listed. All the species present in the study area are well represented in the Forestry Micro Watershed region.

In the tree stratum there are four perennial floristic species in the area subject to change of land use and environmental impact.

The shrub stratum has 21 perennial floristic species in the area subject to study. With a diversity of species in poor condition.

The group of cacti on the other hand, has five perennial floristic species and a diversity of species in poor condition.

Finally, in the herbaceous stratum the trend of better condition of attributes of diversity and abundance is maintained.

According to the natural environment of the Project area, it is considered that the diversity is very well defined within the category of microphyllous desert scrub and is considered of average diversity due to the characteristics of the strata.

The measures to be implemented during the development of the Project will be compensatory and will be designed to return the natural resources (flora) to the ecosystem in a technically feasible proportion for gradual implementation, as indicated in the Reforestation and Rescue Program of both flora and fauna species.

Faunal Composition on the Area

In relation to Fauna, 66 sites of the area subject to study were analyzed, with the following results:

Mastofauna

For the group of mammals, 8 species were identified: Coyote (3 per ha), Kangaroo Rat (7 per ha), Antelope Hare (7 per ha), Skunk (3 per ha), Gray Fox (7 per ha), White-tailed Deer (3 per ha), Jabali (10 per ha), Desert Rabbit (7 per ha).

Avifauna

Aves was the faunal group with the highest number of identified species (15), as well as individuals recorded in the sampling and in the resulting inventory. None of the species in this group is listed in NOM-059-SEMARNAT-2010.

Herpetofauna

The herpetofauna group was the one with the lowest species richness, compared to the other groups, with only 3 species identified: (Porohui 3 per ha; Culebra squeaks 3 per ha; Spiny lizard 3 per ha), for a total of 9 individuals/hectare. A species of this group is included in the NOM-059-SEMARNAT-2010, the Chirriona snake (Masticophis flagellum) that is in threatened status, not endemic.

As part of the permitting process, the Company will identify a program for the rescue and relocation of species of flora and fauna that are subject to a protected status, in accordance with federal standard NOM-059 SEMARNAT 2010.

20.2.1.6 Socioeconomic Baseline

Population. The closest urban centre to the Project is Cucurpe village, which records a population of 863 persons or 0.1% of Sonora State's total. Proportionally, there are 119 men for each 100 females, with an average age of 38 years. There are 53 persons per 100 depending economically on persons of a productive age.

Territory. Cucurpe county covers 1,577.9 km² or 0.9% of Sonora State's surface area, with a population density of 0.5 individuals per km².

Agriculture. This activity occurs over a surface area of 1,202 hectares; 420 hectares are irrigated with water from wells and 782 hectares with rainwater irrigation. Agriculture is the main jobs generator in the municipality, generating 246 direct jobs, which account for 70% of the employed population.

Livestock. Cattle farming is one of the main activities in Cucurpe, with mainly summer pastures utilizing 177,885 hectares. According to COTECOCA-SARH, the actual summer pasture ratio is 9.93 head of cattle per hectare.

Mining. Mining is one of the main three employment-generating activities in Cucurpe, in recent decades, mining has, at times, been its number one employment activity. Recent information accounts for 350 direct jobs being occupied by this activity. It is expected that the Cerro Caliche Project would triple this number if it is brought into production.

20.2.1.7 Geotechnical Environment

A-GEOMMINING conducted geotechnical studies on rock from planned pit walls to assess it stability characteristics and also conducted the geotechnical heap leach basement studies. Hydrology studies and design flood calculation were developed by ISM.

20.2.1.8 Climate

A comprehensive climate characterization and hydrology study was conducted to establish meteorological variables (wind, rain, evaporation and temperature) and 24-hour storm events for different return periods (2 years to 10,000 years). This information would be used to design the hydraulic infrastructure needed to protect the open pit designs, waste rock landfills, leach pad and heap leach system pond.

20.2.1.9 Water for Operation

Morales Geophysics conducted geohydrological characterization studies for the location of potential groundwater in an area of 8 km² using a Magnetometry-VLF-Natural Source study; 8 profiles were developed and 2 potential sites were located on which to drill production water wells.

CONAGUA locates the Project in the San Miguel Aquifer, which is administered by the Northwest Basin Agency of the Hydrological Region.

According to data that was published in the CONAGUA December, 2020 report on the San Miguel aquifer, the annual net availability of groundwater for the (2625) San Miguel Aquifer is 2,297,630 cubeic metres. As such, the aquifer has no restrictions and has water available for concession. Accordingly, Sonoro has initiated discussions with the local CONAGUA office to obtain the exploration water well permit, and to proceed with the acquisition of water rights for the Project.

20.2.2 Surface Access

In 2021, Sonoro initiated land negotiations with the principal private landowner Martin Padres for the use and temporary occupation of 1,865 hectares. Mr. Padres has expressed his acceptance of the development of the Project and both parties are currently negotiating the land occupation terms. There are currently no mining opposition groups in the region.

20.2.3 Air and Noise Emissions

Smoke, dust and noise emissions will be present at the Project. The operation of machinery and equipment during the different phases of the Project will result in smoke and noise emissions. The transport of mineralized materials and rock residues by trucks and belts, road operations and vegetation clearing are the main activities that will generate dust emissions. The level of emissions will not be significant since they will occur in an open and wide space, however, the total suspended particles will be monitored by a certified laboratory to ensure that the levels comply with the Official Mexican Standard NOM-035-SEMARNAT-1993.

Noise related to the operation of machinery and equipment will occur outside populated localities and monitoring is not required by environmental law. Considering current operations, noise levels will be in the range of 70 to 80 decibels type A at a distance of less than 60 metres from the equipment and this will be monitored to comply with the health and safety standards regulated by NOM-011-STPS-2001.

21.0 CAPITAL AND OPERATING COSTS

21.1 CAPITAL COSTS

As shown in Table 21.1, it is estimated that the initial capital expenditure required to construct the Cerro Caliche Project with the facilities described in this report is estimated at \$15.5 million. The components of that estimate are discussed below.

Table 21.1 Capital Cost Summary

Project Area	Item	Total Capex (US \$k)
100	Crushing	\$1,814
300	Leaching	\$1,670
500	Carbon	\$767
600	Refinery	\$704
700	Reagents	\$348
800	Laboratories	\$560
900	Site and Utilities	\$1,319
1000	Truck Shop / Warehouse	\$107
1100	Mobile Equipment	\$274
1200	Water Distribution	\$224
	Equipment and Materials Sub-Total	\$7,787
	Other Infrastructure (Office, Computers, Administration)	\$192
	Light Vehicles	\$268
	Internal Engineering	\$246
	Access Roads	\$412
	Leach Pad – Phase 1 (Construction and Materials)	\$1,215
	Permits and Services	\$650
	Construction Directs	\$1,412
	Sub-Total	\$4,395
	Sub-Total Fixed Investment	\$12,182
	Contingency @ 15 %	\$1,827
	Total Fixed Investment	\$14,009
	Factored EPCM @ 12.5 %	\$1,523
	TOTAL INVESTMENT	\$15,532

Source: Sonoro and D.E.N.M. (2023

21.1.1 Open Pit Mining Capital Cost

The Cerro Caliche Project open pit mining operation will use local mining contractors to suppy all required direct mining, rolling stock and maintenance requirements. This will ensure delivery to the crushing plant at an initial nominal tonnage of 4,000 tpd ramping up to 12,000 tpd in Years three for remaining life of mine.

Any capital facilities associated with the mining that will be provided by Sonoro has been included in Table 20.1 in the areas of other infrastructure and light vehicles.

21.1.2 Process Plant Equipment Costs

The capital cost estimates for the processing plant include US \$1.8 million for a down payment on a three-stage crushing circuit. The quotation for this was supplied by a local vendor in Mexico based on the preliminary process design criteria generated in Section 13 and 17 of this report. The crushing system consists of crushers, screens, feeders, and material handling components. Other major items of process plant capital include the CIC adsorption circuit and the leach pads, the costs of which were determined from a database for similar local applications.

Costs for all other minor mechanical equipment such as bins, tanks and structures were based on a current database.

21.1.3 Process Plant Direct Construction Costs

Direct construction costs primarily associated with the CIC adsorption circuit and leach pad are based on factoring as well as quoted installation costs on a $/m^2$. basis. A database of previous adsorption circuits aided in the associated costs.

21.1.4 Process Plant Indirect Costs

Factored costs were used in the process EPCM indirect costs. These are shown in Table 21.2

Table 21.2 Process Plant Indirect Capital Cost Factors

Factor (%)	Factored Basis
5.2	% Total Fixed Capital Cost
7.3	% Total Fixed Capital Cost
	Factor (%) 5.2 7.3

Source: D.E.N.M. (2023)

21.1.5 Process Plant Capital Cost Estimate

The process plant described in Section 17.0 of this report and a summary of estimated capital costs is provided in Table 21.3

Table 21.3 Process Plant Cost Estimate

Area	Description	Cost (US \$k)
100	Crushing Circuit (Initial Plant)	\$1,814
300	Leaching Circuit	\$1,670
500	Carbon Stripping Circuit	\$767
600	Refinery Circuit	\$704

Area	Description	Cost (US \$k)
700	Reagents	\$348
800	Assay Laboratory and Sample Preparation	\$560
1200	Water Distribution	\$224
	Plant Capex Total (without contingency)	\$6,087

Source: Sonoro and D.E.N.M. (2023)

21.1.6 Infrastructure Capital Costs

The infrastructure capital cost is estimated at US \$2.99 million and includes utilities, access roads, warehouse, office and generators to provide power in years one and two.

21.1.6.1 Contingency

An overall contingency allowance of 15% was applied to all aspects of the capital cost estimate, except the factored EPCM costs. The total contingency on the initial capital costs is US \$1.8 million.

21.1.6.2 Sustaining Capital Costs

Sustaining capital costs are reflected in the cash flow schedule presented in Section 22 of this report, with the major allowance for the power line installation and lease-to-own payments on the crushing circuit as well as expansion costs for the crusher in year two and for the heap leach pad in years three and four. The sustaining capital for the Project is US \$15.5 million.

Note – The cost for the power line installation was obtained from the major power supplier in Mexico (CFE) based on distance, capacity and loading.

21.2 OPERATING COSTS

The overall Cerro Caliche operating costs include all costs for contract mining of mineralized material and waste, three stage crushing and loading, processing costs, and associated general and administration costs. Table 21.4 summarizes the estimated mine plant operating costs.

Item	\$US/ Year	\$US/t	% Total
Mining – Mineralized Material	2.6m - 9.3m	\$1.99	15%
Mining – Waste (Variable S/R)	8.0m - 18.9m	\$1.99	31%
Crushing	1.4m - 3.4m	\$0.87	6%
Process	8.3m - 22.8m	\$5.72	43%
G & A	2.0m - 2.5m	\$0.70	5%
Total	22.3m - 55.5m	\$13.47	100%

Table 21.4 Mine Plant Operating Costs

Source: Micon, Sonoro and D.E.N.M. (2023)

*Note - Factored in for the Life of Mine Strip Ratio of 2.0

21.2.1 Labour

Cerro Caliche process plant labour positions and rates are based on details of manpower rates supplied by Sonoro for similar operations in the Sonora region of Mexico. The labour cost estimate includes senior process management, operating personnel, and specific support staff. The estimate includes, maintenance, electrical, instrumentation and the assay laboratory. A burden rate for each position was applied, based on the information supplied by Sonoro.

The detailed schedule of personnel requirements is provided in Table 21.5. To accommodate a 24-hour operation, the number of hourly employees and staff totals 95 distributed as follows:

- Processing: 45
- Maintenance: 13
- Mining Support:16
- General and Administrative: 21

Table 21.5 Mine and Plant Operations Labour

Position	No.	Position	No.	Position	No.
Plant Operations		Mine operations		General & Administration	
Process Plant Superintendent	1	Mine Superintendent	1	General Manager	1
Process Plant Supervisor	2	Mine Supervisor	2	General Manager Assistance	1
Process Plant Operator	3	Senior Geologist	1	Admin Manager	1
Process Plant Assistance	6	Jr. Geologist	2	Admin Assistance	1
Leaching		Mine Planner	1	Accountant Manager	1
Leaching Operator	2	Junior Mine Planner	1	Accountant Assistance	1
Leaching Helper	5	Ore-Control	4	Human Resources Manager	
Cruching		Assistance	4	Human Desources Assistance	
Crusher Operator	4	Surveyor Assistance	2	Ruman Resources Assistance	
Crusher Helper	4	Surveyor Assistance	Z	Purchasing Ageint	
	0	Total Labour	16	Warehouse Agent	1
Refinery Definery Operator	2		10	Warehouse Agent	2
Refinery Operator	2				
	2				
Chief Laboratory					
Chief Laboratory	1				1
Laboratory Supervisor	1			Safety & Environmental	1
				Manager	
Laboratory Technician	1			Safety & Environmental	1
				Supervisor	1
Laboratory Assistance	1			Assistance	3
Assayer	2				
Sample Preparer	4			Total Labour	21

Position	No.	Position	No.	Position	No.
Plant Operations		Mine operations		General & Administration	
Maintenance					
Maintenance Supervisor	1				
Maintenance Planner	1				
Maintenance Mechanic	1				
Mobile Mechanic	1				
Diesel Mechanic	1				
Electrician	1				
Electrician Assistance	1				
Mechanic Instrumental	1				
Mechanic Instrumental					
Assistance	1				
Welder	1				
Mechanic Assistance	3				
Total Labour	58				

Source: Sonoro Gold (2023)

21.2.2 Reagents

Reagent costs were supplied by Sonoro and are in-line with other operations in Sonora. Reagents include lime (hydrated), sodium cyanide (NaCN), activated carbon, and anti-scalent.

Consumption of reagents was estimated based on the preliminary Project testwork. Consumptions were calculated on an annual basis and costs were determined based on the annual tonnage processed.

21.2.3 Power

Power to the Cerro Caliche site will be supplied initially by two 750 kW generators and then by a 33kV high voltage line scheduled to be installed in year two. Electricity consumption for the site is estimated at 16,958 MWh per year during years three to nine.

An power cost has been supplied by Commission Federal de Electricity (CFE) at \$ 0.125/kWh.

21.3 RECLAMATION AND CLOSURE COSTS

Regulations in México require that a preliminary closure program to be included in the MIA and a definitive program be developed and submitted to the authorities during the operation of the mine. While regulation requires the preparation of a reclamation and closure plan, as well as a commitment on the part of the operator to implement the plan, no financial bonding has been required of mining companies. Environmental damages, if not remediated by the owner/operator, can give rise to civil, administrative, and criminal liability, depending on the action or omission carried out.

Reclamation and closure costs for the Project have been supplied by Sonoro and are estimated to be \$ 2.9 million as presented in Table 21.6.

Table 21.6 Closure Costs

Activity	Closure Cost (\$M)
Environmental	2.3
Engineering and Procurement	0.3
Subtotal	2.9
Contingency	0.3
Total Reclamation Costs	2.9

Source: D.E.N.M. (2023)

22.0 ECONOMIC ANALYSIS

22.1 CAUTIONARY STATEMENT

This preliminary economic assessment is preliminary in nature. It includes inferred mineral resources that are considered too speculative geologically to have the economic considerations applied to them that would enable them to be categorized as mineral reserves, and there is no certainty that the preliminary economic assessment will be realized.

The results of the economic analyses discussed in this section represent forward-looking information as defined under Canadian securities law. The results depend on inputs that are subject to a number of known and unknown risks, uncertainties and other factors that may cause actual results to differ materially from those presented here.

Information that is forward-looking includes:

- Mineral Resource and Mineral Reserve estimates;
- Assumed commodity prices and exchange rates;
- The proposed mine production plan;
- Projected mining and process recovery rates;
- Assumptions as to mining dilution;
- Capital and operating cost estimates and working capital requirements;
- Assumptions as to closure costs and closure requirements;
- Assumptions as to environmental, permitting and social considerations and risks.

Additional risks to the forward-looking information include:

- Changes to costs of production from what is assumed;
- Unrecognized environmental risks;
- Unanticipated reclamation expenses;
- Unexpected variations in quantity of mineralized material, grade or recovery rates;
- Geotechnical or hydrogeological considerations differing from what was assumed;
- Failure of mining methods to operate as anticipated;
- Failure of plant, equipment or processes to operate as anticipated;
- Changes to assumptions as to the availability and cost of electrical power and process reagents;
- Ability to maintain the social licence to operate;
- Accidents, labour disputes and other risks of the mining industry;
- Changes to interest rates;
- Changes to tax rates and availability of allowances for depreciation and amortization.

22.2 BASIS OF EVALUATION

Micon's QP has prepared the economic assessment of the Project on the basis of a discounted cash flow model, from which Net Present Value (NPV), Internal Rate of Return (IRR) and payback can be determined. Assessments of NPV are generally accepted within the mining industry as representing the economic value of a project, after allowing for the cost of capital invested.

The objective of the study was to determine the potential viability of the Project. In order to do this, the cash flow arising from the base case has been forecast, enabling a computation of NPV to be made. The sensitivity of NPV to changes in the base case assumptions for price, operating costs and capital expenditure was then examined.

22.3 MACRO-ECONOMIC ASSUMPTIONS

22.3.1 Exchange Rate and Inflation

All results are expressed in United States dollars (US\$) except where stated otherwise. Cost estimates and other inputs to the cash flow model for the Project have been prepared using constant, third quarter 2023 money terms, i.e., without provision for escalation or inflation.

22.3.2 Weighted Average Cost of Capital

In order to find the NPV of the cash flows forecast for the Project, an appropriate discount factor must be applied which represents the weighted average cost of capital (WACC) imposed on the Project by the capital markets. The cash flow projections used for the evaluation have been prepared on an all-equity basis. This being the case, WACC is equal to the market cost of equity.

In this case, Micon has selected an annual discount rate of 5% for its base case and has tested the sensitivity of the Project economics to changes in this rate.

22.3.3 Royalty and Tax Regime

Mexican federal income tax is provided for at the rate of 30%. In addition, a mining royalty of 0.5% of gross sales revenue and mining tax of 7.5% of net income have been provided for in the economic evaluation.

22.3.4 Expected Metal Prices

Project revenues will be generated from the sale of gold and silver in the form of doré bars. The Project has been evaluated using constant metal prices of US\$1,800/oz Au and US\$23/oz Ag. These forecast gold and silver prices are below the trailing average prices of US\$1,841/oz and US\$23.70/oz, respectively, for the three-year period ended 31 July, 2023. See Figure 22.1.

Figure 22.1 Ten Year Price History

22.4 TECHNICAL ASSUMPTIONS

The technical parameters, production forecasts and estimates described earlier in this report are reflected in the base case cash flow model. These inputs to the model are summarized below.

22.4.1 Production Schedule

Figure 22.2 shows the annual tonnages of material mined and the annual waste:ore ratio.

Figure 22.2 Annual Tonnage Mined

The annual tonnage and grade of material treated is shown in Table 22.3.

Figure 22.3 Annual Tonnage and Grade Treated

Figure 22.4 shows annual recovered gold and gold equivalent production, demonstrating that silver contributes only a small proportion (4%) of the total gold equivalent ounces produced.

Figure 22.4 Annual Gold Production

Figure 22.5 shows that total revenues from sales of gold and silver exceed site operating costs in each period, resulting in an average operating margin of 28% over the life-of-mine. The cash operating cost averages US\$1,349/oz Au, or US\$1,295/oz AuEq.

Off-site refining costs, royalties, sustaining capital and closure costs together add another US\$100/oz, bringing the all-in sustaining costs to \$1,395/oz AuEq.

Figure 22.5 Operating Margin

Table 22.1 summarizes the LOM cash flows and unit costs for the Project. Figure 22.6 presents a summary of the annual cash flows.

	LOM (US\$M)	US\$/t treated	US\$/oz AuEq
Sales Revenue	535.6	18.72	1,800
Mining Ore	57.1	1.99	192
Mining Waste	119.4	4.17	401
Crushing	25.0	0.87	84
Processing	163.8	5.72	550
G&A	20.1	0.70	68
Cash Operating Costs	385.4	13.47	1,295
Refining	7.3	0.26	25
Royalties	4.0	0.14	13
Sustaining	15.5	0.54	52
Reclamation	2.9	0.10	10
All-in Sustaining Cost	415.1	14.51	1,395
Initial Capital	15.5	0.54	52
All-in-Cost	430.7	15.05	1,447
Mining taxes	11.8	0.41	40
Income Taxes	23.0	0.81	77
Net Cashflow	70.1	2.45	236

Table 22.1 LOM Cashflow Summary

Figure 22.6 Annual Cash Flow Summary

Table 22.2 provides a summary of the annual cash flows over the LOM period.

The average all-in sustaining costs (AISC) over the LOM is estimated at \$1,454/oz gold or \$1,395/oz gold equivalent.

The base case cash flow equates to a pre-tax IRR of 59% and a net present value at a 5% annual discount rate (NPV₅) of US\$71.4 million.

After-tax cash flows equate to an IRR of 45% and NPV₅ of US\$47.7 million. Undiscounted payback is achieved in approximately 2.8 years.

Sonoro Gold Corp.

Table 22.2 Annual Cashflow Summary

	Pre-Prod	Year1	Year2	Year3	Year4	Year5	Year6	Year7	Year8	Year9	Total
Production											
Mined - Ore (tonnes)		1,344,000	1,344,000	4,032,000	4,032,000	4,032,000	4,032,000	4,032,000	4,032,000	1,735,735	28,615,735
Mined - Waste (tonnes)		3,998,998	3,843,543	9,768,338	5,926,684	7,197,732	7,682,958	8,057,891	9,621,129	3,922,038	60,019,311
Strip Ratio		2.66	2.46	2.05	1.13	1.44	1.51	1.68	2.00	1.88	1.74
Average Grade											
Ore- crushed Au g/t		0.68	0.64	0.48	0.41	0.38	0.40	0.40	0.36	0.40	0.43
Ore - crushed Agg/t		2.74	3.82	4.54	3.12	4.22	3.03	2.73	4.23	5.91	3.75
Ore - crushed AuEq g/t		0.70	0.66	0.50	0.43	0.40	0.42	0.42	0.39	0.43	0.45
Process Recovery - Au	72%	72%	72%	72%	72%	72%	72%	72%	72%	72%	
Process Recovery - Ag	27%	27%	27%	27%	27%	27%	27%	27%	27%	27%	
Gold Price US\$/oz Au	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	
Silver Price US\$/oz Ag	\$23	\$23	\$23	\$23	\$23	\$23	\$23	\$23	\$23	\$23	
Recovered Gold & Silver Producti	on										
Au Oz Recovered (000s)		17,007	20,123	39,846	39,884	36,134	37,272	37,618	34,748	22,958	285,591
Ag Oz Recovered (000s)		17,685	34,322	106,244	115,233	138,827	119,945	107,339	127,010	171,287	937,893
AuEq (000 oz)		17,233	20,562	41,204	41,357	37,908	38,805	38,990	36,371	25,147	297,575
Revenues (US\$'000)											
Revenue -Au		30,613	36,221	71,723	71,792	65,042	67,090	67,713	62,547	41,324	514,064
Revenue -Ag		407	789	2,444	2,650	3,193	2,759	2,469	2,921	3,940	21,572
Sales Revenue		31,019	37,011	74,166	74,442	68,235	69,849	70,182	65,468	45,264	535,636
Cash Costs (US\$'000)											
Mining Ore		2,696	2,726	7,816	8,365	8,092	8,040	8,045	7,861	3,425	57,067
Mining Waste		8,023	7,797	18,935	12,296	14,445	15,321	16,079	18,757	7,739	119,392
Crushing		1,451	1,451	3,394	3,394	3,394	3,394	3,394	3,394	1,720	24,988
Processing		8,373	8,383	22,857	22,857	22,857	22,857	22,857	22,816	9,937	163,792
G&A		2,032	2,032	2,470	2,470	2,470	2,470	2,470	2,470	1,235	20,120
Total Cash Costs		22,576	22,389	55,472	49,382	51,258	52,082	52,845	55,298	24,056	385,359
Refining (USD \$m)		208	327	877	931	1,050	943	870	971	1,165	7,341
2% Royalties Payout (USD \$m)		1,000	1,000	0	2,000	0	0	0	0	0	4,000
Sustaining Capital (USD \$m)		1,237	6,753	2,981	2,981	804	250	250	250	0	15,506
Reclamation (USD \$m)		137	137	411	411	411	411	411	411	177	2,915
Total AISC (USD \$m)		47,735	54,079	116,746	107,096	106,143	107,207	108,634	113,072	51,011	415,121
Initial Capital Costs	-15,532										-15,532
Change in W/Cap.		-694	-508	-335	-523	664	-65	35	589	836	0
Income Tax Payable		-457	-1,806	-3,028	-4,182	-2,687	-2,933	-2,834	-824	-4,287	-23,039
Mex. mining tax, royalty		-600	-1,084	-1,534	-2,009	-1,363	-1,438	-1,413	-844	-1,557	-11,843
Net Cash Flow (US\$'000)	-15,532	4,247	3,144	9,940	12,434	11,737	12,137	12,005	6,703	13,285	70,101
Cum. cashflow	-15,532	-11,285	-8,141	1,799	14,233	25,971	38,107	50,112	56,816	70,101	
Payback period (yrs)	2.82	1.00	1.00	0.82	0.00	0.00	0.00	0.00	0.00	0.00	

255

22.5 SENSITIVITY STUDY

Micon tested the sensitivity of the base case after-tax IRR and NPV5 to changes in metal price, operating costs and capital investment, for a range of 30% above and below base case values. The impact on NPV5 to changes in other revenue drivers, such as gold grade of material treated and the percentage recovery of gold from processing is equivalent to gold price changes of the same magnitude, so these factors can be considered as equivalent to the price sensitivity.

Figure 22.7 and Figure 22.8 respectively show the impact on NPV5 and IRR of changes in each factor separately. The charts demonstrate that the Project remains viable across the range of sensitivity tested. Nevertheless, it is most sensitive to gold price, with a reduction of 18% reducing NPV5 to near zero. The Project is less sensitive to operating costs, with an increase of 25% reducing NPV5 to near zero, while a 25% increase in capital expenditure reduces NPV5 by only 12.5% to US\$41.7 million.

Figure 22.7 Sensitivity of After-Tax NPV₅

Figure 22.8 Sensitivity of After-Tax IRR

22.5.1 Gold and Silver Price Sensitivity

The impact on project economics of specific metal prices was determined to be as shown in Table 22.3.

Gold Price (US\$/oz) Silver Price (US\$/oz)	\$1,600 \$20	\$1,700 \$22	\$1,800 \$23	\$1,900 \$26	\$2,000 \$28
Pre-Tax NPV₅ (US\$M)	\$27.34	\$49.71	\$71.42	\$94.46	\$116.84
Pre-Tax IRR	30%	45%	59%	72%	85%
After-Tax NPV ₅ (US\$M)	\$19.14	\$32.63	\$47.68	\$62.57	\$77.02
After-Tax IRR	23%	34%	45%	54%	63%
After-Tax Payback (yrs)	4.1	3.4	2.9	2.6	2.4

Table 22.3 Gold and Silver Price Sensitivity

22.5.2 Operating and Capital Cost Sensitivity

The impact of changes in operating and capital costs was determined to be as shown in Table 22.4.

Sensitivity	Item	Units	-20%	-10%	Base Case	10%	20%
Operating Costs	Pre-tax NPV	US\$M	\$128.33	\$99.87	\$71.42	\$42.97	\$14.51
	Pre-Tax IRR	%	90%	75%	59 %	41%	20%
	After-tax NPV	US\$M	\$84.45	\$66.07	\$47.68	\$29.27	\$10.62
	After-Tax IRR	%	67%	56%	45%	32%	16%
Capital Costs	Pre-tax NPV	US\$M	\$76.20	\$73.81	\$71.42	\$69.03	\$66.64
	Pre-Tax IRR	%	73%	65%	59%	54%	49%
	After-tax NPV	US\$M	\$52.46	\$50.07	\$47.68	\$45.29	\$42.90
	After-Tax IRR	%	56%	50%	45%	40%	36%

Table 22.4 Operating and Capital Costs Sensitivity

23.0 ADJACENT PROPERTIES

Important properties adjacent to Cerro Caliche Project include the Cerro Prieto gold mine, located approximately two kilometres from the Project's western boundary; the Mercedes gold/silver mine, located approximately 10 km from the Project's southeastern boundary; and the re-developing Santa Gertrudis gold project, located approximately 20 km from the Project's northern boundary.

The closest property to the Project is the Cerro Prieto Gold mine, an operating open pit heap leach mine owned by Goldgroup Mining Inc (Goldgroup). Goldgroup, a public Canadian company listed on the TSXV, acquired the property in 2013 and commenced operations in 2014. Annual production for 2022 totaled 11,274 ounces of gold (Goldgroup March 31, 2023 AIF).

The Mercedes gold/silver mine is primarily an underground mining operation carried out in epithermal veins of the same age as the Cerro Caliche and Cerro Prieto properties. The mine is owned by Bear Creek Mining Corporation (Bear Creek) which acquired the operation from Equinox Gold Corp in April 2022. From 2011 to December 31, 2021, the Mercedes mine produced 824,000 ounces of gold and 3,479,000 ounces of silver at 4.24 g/t Au and 47.4 g/t Ag (2022 Mercedes Report). According to the Bear Creek 2022 AIF, the Company produced 34,628 ounces of gold and 112,475 ounces of silver during the year and set a target of 65,000 to 75,000 ounces of gold for 2023.

The Santa Gertrudis gold mine previously operated as a gold producer from gold hosted in calcareous shale as oxidized sulphide replacement zones, identified as Carlin style gold mineralization. Previous heap-leach production was initiated by Phelps Dodge Copper beginning in 1988 and continued through 1995. Phelps Dodge sold the project to Campbell Resources which suspended operations in 2000. The Santa Gertrudis property produced approximately 565,000 ounces of gold between 1991 and 2000 (Agnico-Eagle website, 2021).

Agnico-Eagle Mines Ltd. (Agnico-Eagle) acquired the Santa Gertrudis property in 2017 and according the Company website, as at December 31, 2022, the project hosts open-pit indicated mineral resources of 17.6Mt at 0.91 g/t Au and 3.7 g/t Ag, as well as inferred mineral resources of 11.2Mt at 1.28 g/t Au and 2.1 g/t Ag, plus underground inferred mineral resources of 9.1Mt at 3.4 g/t Au and 23.3 g/t Ag. The Company is currently evaluating a heap leach mining operation for lower-grade mineralization and a small mill facility to process higher-grade ore.

The mineralization and deposits described in this Technical Report for the Cerro Caliche Project are entirely contained on the property and there are no adjacent mineral properties which directly affect the Cerro Caliche Project.

The QPs have not verified the information regarding the mineral deposits and showings described above that are outside the immediate area of the Cerro Caliche Project. The information contained in this section of the report, which was provided by Sonoro as well as independently researched, is not necessarily indicative of the mineralization at the Cerro Caliche Project.

24.0 OTHER RELEVANT DATA AND INFORMATION

All relevant data and information regarding the Cerro Caliche Project are included in other sections of this Technical Report.

The QPs are not aware of any other data that would make a material difference to the quality of this Technical Report or make it more understandable, or without which the report would be incomplete or misleading.

24.1 PROJECT RISKS AND OPPORTUNITIES

The Cerro Caliche Project is considered medium risk at the time of this PEA report.

24.1.1 Project Risks

Potential risks for the Project include:

- **Metallurgical Performance & Metal Production.** The sensitivity analysis indicates that the Project is highly sensitive to metal production and any variations in the overall metal production (gold and silver) will affect the stated Project cash flow. In the calculation of metal revenues, global recoveries were used for both gold and silver. Variation in the specific zone recoveries at Cerro Caliche should be investigated and confirmed as part of the planned metallurgical testing and design.
- **Metal Prices.** As with metal production, changes in metal prices have a material effect on the Project.
- **Water.** As typical of Mexican heap leach projects located in the Sonora region, water demand is high due to evaporation. Water for the process is to be supplied via surface drilled wells but further investigation is recommended to confirm well supply for the required make-up water.
- The proposed production scenario uses Indicated and Inferred Mineral Resources. Mineral Resources do not have demonstrated economic viability. Further development into a Pre-Feasibility Study (PFS) would lessen this risk.

24.1.2 Project Opportunities

Potential opportunities for the Project include:

- **Capital Costs**. A potential reduction of capital costs is in the area of a leased crushing plant, contract crushing, and possible utilization of remanufactured process equipment. This will, however, affect the processing operating costs and a trade-off study should be completed.
- **Metallurgical Recoveries and Metal Prices**. As stated previously, the Project is sensitive to metal production and metal prices. At present, with any increase in metal prices (gold and silver), the Project viability increases at the preliminary economic assessment level (After-Tax NPV and IRR).
- The additional acquisition of prospective property and exploration potential in the areas surrounding Cerro Caliche.

25.0 INTERPRETATION AND CONCLUSIONS

25.1 OVERVIEW

Sonoro has been of conducting exploration and further studies at its Cerro Caliche Project in the State of Sonora which has resulted in this PEA based on its latest mineral resource estimate. The results of the PEA are disclosed in this report. Further studies and work by Sonoro will be needed to define the economic potential of the mineralization at the Cerro Caliche Project.

25.2 RESULTS OF THE PEA

25.2.1 Mining, Processing and Infrastructure

25.2.1.1 Mining

The long-term open pit mining evaluation for the "Cerro Caliche Project" provides for a nominal rate of run-of-mine (ROM) leach feed production of 4,000 t/d during the first 3 years and 12,000 t/d in the following years. The ROM total leach feed production is 28.6 Mt, based on an in-situ marginal cut-off grade (CoG) of 0.21 g/t gold, f over a period of 9.1 years, with a contained average of 45,000 ounces of gold per year and total of 414, 429 ounces. The waste material within the ultimate pit design is 60.0 Mt and the total material mined is 88.6 Mt, for an overall strip ratio (SR) of 2.1. The ultimate pit design contains waste material comprising all mined material below the CoG of 0.21 g/t gold, including low grade (LG) mineralized material between the "break even" and "marginal" Au CoG's of 0.19 g/t gold and 0.21 g/t gold, which may be segregated into a LG stockpile for future potential blending (LG material is not included in the in-pit resources).

This study assumes open pit mining methods, utilizing front-end loaders and/or hydraulic excavator to load haul trucks for waste and mineralized material haulage. Mining activities include site clearing, removal of topsoil, free-digging, drilling, blasting, loading, hauling and mining support activities.

Material within the pits is designed to be blasted at 6 m bench height intervals. The stripped waste material is to be hauled to the waste dump. The low-grade mineralized material can be segregated into designated stockpile areas, for subsequent processing. There are no stockpile locations, footprints, or designs contained in this PEA report. The low-grade material is treated as waste, highlighted as positive potential for future stages of planning.

For the PEA study, the mine has been assumed to be contractor operated, with the contractor providing the mining equipment and labour. The fleet details should be further refined in the next stage of PFS level engineering, with quotations obtained from three contractors. There is opportunity to consider a trade off study of operator owned vs. contractor owned fleet within a PFS.

The mine plan has been scheduled based on operating 2–10 hour shifts per day, 7 days per week, for 336 days per year. There are 336 operational days, allowing for 29 days or 8%, for planned external downtime delays, weather condition delays, and mining operational issues.

The ultimate pit design has 12 pit areas with the overall pit slope angles are below the 50-degree maximum of the inter-ramp angle defined by the face angle and the berm widths. Cerro Caliche West is comprised of the Cabeza Blanca and El Colorado Pits, while the remainder of the pits are all considered part of Cerro Caliche Central.

Mine production scheduling was carried out using Datamine's NPVS software. The total quantities of leach feed, waste and the grades coming from each pit in the life-of-mine production schedule are summarized in **Error! Reference source not found.**, and the annual schedule of ROM leach feed production is summarized in Table 25.2.

The mining rate follows the 4,000 and 12,000 t/d throughput capacities of the crushing circuit in Years 1-3 and Years 4-10 respectively. The daily rates add up to annual totals of 1.34 Mt and 4.03 Mt of ROM leach feed, respectively.

The LOM production schedule includes ROM leach feed of 28.6 Mt and e 60.0 Mt of waste, for a total of 88.6 Mt mined. The production schedule was estimated on a monthly basis for the first 2 years, then continued on a yearly basis until the end of the mine life in early Year 10.

25.2.1.2 Processing

The recovery methods implemented in the design of the crushing and process facilities for the Cerro Caliche Project used preliminary testwork as a basis for flowsheet development and design criteria. The plant design for this PEA is based on processing a nominal 4,000 t/d (Years 1 and 2) and a nominal 12,000 t/d (Years 3-9) of mineralized material with average grades of 0.43 g/t Au and 3.75 g/t Ag.

The process plant flowsheet design comprises three stage conventional crushing, material handling of crushed product and loading onto the lined heap pads. Solution ponds and pumping systems allows irrigation of loaded mineralized material and subsequent collection of the pregnant solution. The pregnant solution is pumped to two trains of carbon-in-column tanks for loading gold and silver onto the carbon. Standard carbon-in-column processing includes carbon advancement, carbon addition, and loaded carbon recovery. The Cerro Caliche processing plant will also operate carbon stripping, carbon reactivation, electrowinning, and a doré refinery. In which the gold and silver are stripped and recovered for the production of dorè bars.

The Cerro Caliche processing plant is designed to operate for two 12-hour shifts per day, 360 days per year. Utilization expected for the specific circuits is 60% for the primary crusher and 92% for the leaching and carbon adsorption. The factors applied allow for sufficient downtime for maintenance, both scheduled and unscheduled, within the crushing and processing areas.

Table 25.1 Mine Production Schedule s by Pit

Pit	Parameter	Units	Total
	ROM	t	10,744,042
	Au Grade	g/t	0.373
Japoneses- Buena Vista	Ag Grade	g/t	3.052
	AuEq Grade	g/t	0.388
	Au Contained Ounces	oz	134,160
	ROM	t	1,849,096
	Au Grade	g/t	0.542
El Colorado	Ag Grade	g/t	2.231
	AuEq Grade	g/t	0.554
	Au Contained Ounces	oz	32,914
	ROM	t	1,342,363
	Au Grade	g/t	0.509
Cuervos	Ag Grade	g/t	3.404
	AuEq Grade	g/t	0.526
	Au Contained Ounces	oz	22,719
	ROM	t	4,148,750
	Au Grade	g/t	0.492
Buena Suerte	Ag Grade	g/t	4.269
	AuEq Grade	g/t	0.514
	Au Contained Ounces	oz	68,571
	ROM	t	531,331
	Au Grade	g/t	0.483
Veta de Oro	Ag Grade	g/t	8.774
	AuEq Grade	g/t	0.528
	Au Contained Ounces	oz	9,011
	ROM	t	1,355,496
	Au Grade	g/t	0.439
Abejas	Ag Grade	g/t	4.725
	AuEq Grade	g/t	0.463
	Au Contained Ounces	oz	20,169

Pit	Parameter	Units	Total
	ROM	t	2,521,157
	Au Grade	g/t	0.65
Cabeza Blanca	Ag Grade	g/t	2.48
	AuEq Grade	g/t	0.663
	Au Contained Ounces	oz	53,743
	ROM	t	1,339,326
	Au Grade	g/t	0.322
Chinos NW	Ag Grade	g/t	3.772
	AuEq Grade	g/t	0.341
	Au Contained Ounces	oz	14,691
	ROM	t	364,304
	Au Grade	g/t	0.363
Chinos Altos	Ag Grade	g/t	2.322
	AuEq Grade	g/t	0.375
	Au Contained Ounces	oz	4,391
	ROM	t	1,750,166
	Au Grade	g/t	0.342
El Rincon	Ag Grade	g/t	7.728
	AuEq Grade	g/t	0.382
	Au Contained Ounces	οz	21,482
	ROM	t	609,838
	Au Grade	g/t	0.463
La Espanola	Ag Grade	g/t	2.145
	AuEq Grade	g/t	0.474
	Au Contained Ounces	oz	9,295
	ROM	t	2,059,866
	Au Grade	g/t	0.324
El Bellotoso	Ag Grade	g/t	5.356
	AuEq Grade	g/t	0.352
	Au Contained Ounces	oz	23,283

Pit	Parameter	Units	Total
	ROM	t	28,615,735
	Au Grade	g/t	0.431
	Ag Grade	g/t	3.784
Total Minod	AuEq Grade	g/t	0.45
Totat Mined	Au Contained Ounces	oz	414,429
	Waste	t	60,019,311
	Total	t	88,635,046
	SR	t:t	2.1
PRODUCTION ASSUMPT	TOTAL		
Days	3,057		
Total ROM tonnes/day	9,362		
Total ROM tonnes over LO	28,615,735		
Total Insitu ROM Ounces		414,429	

Table 25.2
Cerro Caliche Project Leach Feed Production Schedule

MINE S	CHEDULE	Units	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10	Total
	ROM	Mt	0.84	0.28					0.38	1.02			2.5
Cabeza Blanca-	Au Grade	g/t	0.71	1.35					0.63	0.42			0.65
Guadalupe	Ag Grade	g/t	2.40	1.12					2.95	2.74			2.48
	AuEq Grade	g/t	0.73	1.36					0.64	0.43			0.66
	ROM	Mt	0.46	0.26					0.21	0.92			53.74
	Au Grade	g/t	0.66	0.58					0.39	0.509			0.54
El Colorado	Ag Grade	g/t	3.28	2.15					2.66	1.627			2.23
	AuEq Grade	g/t	0.68	0.59					0.40	0.517			0.55
	Au Contained	koz	10.02	4.87	1.02	2.54			2.74	15.28			32.91
	Au Grade	g/t	0.33	0.34	0.53	0.50							0.49
Buena Suerte	Ag Grade	g/t	3.65	4.67	3.17	4.64							4.27
	AuEq Grade	g/t	0.35	0.40	0.55	0.53							0.51
	Au Contained	koz	0.44	7.00	18.16	42.98							68.57
	ROM Au Grade	Mt a/t		0.27	0.32	0.77							1.4
Abeias	Ag Grade	g/t		6.48	4.87	4.06							4.73
-	AuEq Grade	g/t		0.52	0.46	0.44							0.46
	Au Contained	koz		4.48	4.65	11.03							20.17
	ROM	Mt				0.72	2.72	3.47	3.11	0.72			10.7
Japoneses-Buena	Au Grade	g/t g/t				0.41	0.39	0.36	0.37	0.37			0.37
Vista	AuEq Grade	g/t				0.43	0.40	0.37	0.39	0.38			0.39
	Au Contained	koz				9.92	35.16	41.76	38.54	8.79			134.16
	ROM	Mt					0.78	0.57					1.3
	Au Grade	g/t					0.54	0.46					0.51
cuervos	Ag Grade	g/t g/t					4.20	0.47					3.40 0.53
	Au Contained	koz					14.14	8.58					22.72
	ROM	Mt					0.53						0.5
	Au Grade	g/t					0.48						0.48
Veta de Oro	Ag Grade	g/t					8.77						8.77
	Aueq Grade	koz					9.01						9.01
	ROM	Mt					5.01		0.33	1.01			1.3
	Au Grade	g/t							0.36	0.31			0.32
Chinos NW	Ag Grade	g/t							5.84	3.09			3.77
	AuEq Grade	g/t koz							0.39	0.32			0.34
	ROM	Mt							4.21	0.36	0.00		0.4
	Au Grade	g/t								0.36	0.43		0.36
Chinos Altos	Ag Grade	g/t								2.33	1.16		2.32
	AuEq Grade	g/t								0.37	0.43		0.37
	ROM	Mt								4.54	2.06		2.1
	Au Grade	g/t									0.32		0.32
El Bellotoso	Ag Grade	g/t									5.36		5.36
	AuEq Grade	g/t									0.35		0.35
	ROM	Mt									1.75		23.28
	Au Grade	g/t									0.34		0.34
El Rincon	Ag Grade	g/t									7.73		7.73
	AuEq Grade	g/t									0.38		0.38
	ROM	KOZ Mt		ł							0.22	0.39	21.48
	Au Grade	g/t									0.47	0.46	0.46
La Espanola	Ag Grade	g/t									3.37	1.46	2.15
	AuEq Grade	g/t									0.49	0.47	0.47
	Au Contained	koz	1.2	1.2	1.2	1.0	1.0	4.0	4.0	4.0	3.42	5.88	9.29
	Au Grade	g/t	0.68	0.64	0.51	0.47	0.43	0.37	0.40	0.40	0.34	0.4	0.43
ROM	Ag Grade	g/t	2.74	3.82	3.57	4.42	4.08	3.32	3.03	2.22	6.27	1.46	3.78
	AuEq Grade	g/t	0.70	0.66	0.53	0.49	0.45	0.39	0.41	0.41	0.37	0.47	0.45
	Au Contained	koz	30	28.4	22.8	63.9	58.3	50.3	53.3	53.1	48.2	5.9	414.4
Waste	LG Stockpile	Mt ∿4+	0	0.5	0.5	1.4	1.4	1.4	1.6	1.4	1.6	0.0	10.29
waste	Total Waste	Mt	4	3.8	2.3	8.5	7.0	6.3	9.3	9.0	8.5	0.8	60.0
	ROM	Mt	1.3	1.3	1.3	4.0	4.0	4.0	4.0	4.0	4.0	0.4	28.62
	Au Grade	g/t	0.68	0.64	0.51	0.47	0.43	0.37	0.40	0.40	0.34	0.46	0.43
	Ag Grade	g/t	2.74	3.82	3.57	4.42	4.08	3.32	3.03	2.22	6.27	1.46	3.78
Mined	AuEq Grade	g/t koz	0.70 30	0.66 28.4	0.53 22 8	0.49 63 9	0.45 58 3	0.39 50 3	0.41 52 2	0.41 52 1	0.37 48 2	0.47 59	0.45 414 4
	Waste	Mt	4	3.8	2.8	8.5	7.0	6.3	9.3	9.0	8.5	0.9	60.0
	Total Tonnes	Mt	5	5.2	4.2	12.5	11.0	10.3	13.3	13.0	12.5	1.2	88.6
	SR	t:t	3.0	2.9	2.1	2.1	1.7	1.6	2.3	2.2	2.1	2.2	2.10

25.2.1.3 Infrastructure

The current infrastructure of the Cerro Caliche Project consists of a nearby medium voltage powerline, access roads, and mining operations within close proximity. There is a 14 km gravel access road from the village of Cucurpe, located 40 km southeast of the regional hub of Magdalena de Kino, Sonora, which, in turn, is located 54 km from the Project. For years one and two, the site will be powered by two 750 kw generators and then by a 33 kV transmission line for years three through nine. Usage and installation costs have been discussed with the Commission Federal de Electricity (CFE) for the power line and associated switch gear.

As multiple active mines and sufficient infrastructure surround the Cerro Caliche site, D.E.N.M. Engineering is of the opinion that there are no major obstacles to building this open pit mine, heap leach facility, and process recovery plant in the proposed area.

Water is to be supplied by nearby drilled water wells and there is no on-site housing, as all employees and contractors will commute from the nearby town locations.

25.2.2 Economic Analysis

Micon's QP has prepared the assessment of the Project on the basis of a discounted cash flow model, from which Net Present Value (NPV), Internal Rate of Return (IRR) and payback can be determined. Assessments of NPV are generally accepted within the mining industry as representing the economic value of a project after allowing for the cost of capital invested.

The objective of the study was to determine the potential viability of the Project. In order to do this, the cash flow arising from the base case has been forecast, enabling a computation of NPV to be made. The sensitivity of NPV to changes in the base case assumptions for price, operating costs and capital expenditure was then examined.

25.2.2.1 Macro-Economic Assumptions

The following assumptions were used to determine the results of the PEA;

- All results are expressed in United States dollars (US\$) except where stated otherwise. Cost estimates and other inputs to the cash flow model for the Project have been prepared using constant, third quarter 2023 money terms, i.e., without provision for escalation or inflation.
- The cash flow projections used for the evaluation have been prepared on an all-equity basis. This being the case, the weighted average cost of capital is equal to the market cost of equity. In this case, Micon's QP has selected an annual discount rate of 5% for its base case and has tested the sensitivity of the project to changes in this rate.
- Mexican federal income tax is provided for at the rate of 30%. In addition, a mining royalty of 0.5% of gross sales revenue and mining tax of 7.5% of net income have been provided for in the economic evaluation.

• The Project has been evaluated using constant metal prices of US\$1,800/oz Au and US\$23/oz Ag. These forecast gold and silver prices are below the trailing average prices of US\$1,841/oz and US\$23.70/oz, respectively, for the three-year period ended 31 July 2023.

25.2.2.2 Results of Economic Analysis

The following results are noted from the economic analysis of the Cerro Caliche Project.

- The annual recovered gold, together with gold equivalent production, demonstrates that silver contributes only a small proportion (4%) of the total gold equivalent ounces produced.
- The total revenues from sales of gold and silver exceed site operating costs in each period, resulting in an average operating margin of 28% over the LOM. The cash operating cost averages US\$1,349/oz Au, or US\$1,295/oz AuEq.
- Off-site refining costs, royalties, sustaining capital and closure costs together add another US\$100/oz bringing the all-in sustaining costs to \$1,395/oz AuEq.

Table 25.3 summarizes the LOM cash flows and unit costs for the Project. Table 25.1 presents a summary of the annual cash flows.

	LOM (US\$M)	US\$/t treated	US\$/oz AuEq
Sales Revenue	535.6	18.72	1,800
Mining Ore	57.1	1.99	192
Mining Waste	119.4	4.17	401
Crushing	25.0	0.87	84
Processing	163.8	5.72	550
G&A	20.1	0.70	68
Cash Operating Costs	385.4	13.47	1,295
Refining	7.3	0.26	25
Royalties	4.0	0.14	13
Sustaining	15.5	0.54	52
Reclamation	2.9	0.10	10
All-in Sustaining Cost	415.1	14.51	1,395
Initial Capital	15.5	0.54	52
All-in-Cost	430.7	15.05	1,447
Mining taxes	11.8	0.41	40
Income Taxes	23.0	0.81	77
Net Cashflow	70.1	2.45	236

Table 25.3 LOM Cashflow Summary

Figure 25.1 Annual Cash Flow Summary

Table 25.4 provides a summary of the annual cash flows over the life of the mine period.

The average all-in sustaining costs (AISC) over the LOM is estimated at \$1,454/oz gold or \$1,395/oz gold equivalent.

The base case cash flow equates to a pre-tax IRR of 59% and, at a 5% annual discount rate, gives a net present value (NPV₅) of US \$71.4 million.

After-tax cash flows equate to an IRR of 45% and NPV₅ of US \$47.7 million. Undiscounted payback is achieved in approximately 2.8 years.

25.2.2.3 Sensitivity Study

Micon tested the sensitivity of the base case after-tax IRR and NPV5 to changes in metal price, operating costs and capital investment for a range of 30% above and below base case values. The impact on NPV5 to changes in other revenue drivers such as gold grade of material treated and the percentage recovery of gold from processing is equivalent to gold price changes of the same magnitude, so these factors can be considered as equivalent to the price sensitivity.

Figure 25.2 and Figure 25.3 respectively show the impact on NPV5 and IRR of changes in each factor separately. The charts demonstrate that the Project remains viable across the range of sensitivity tested. Nevertheless, it is most sensitive to gold price, with a reduction of 18% reducing NPV5 to near zero. The project is less sensitive to operating costs, with an increase of 25% reducing NPV5 to near zero, while a 25% increase in capital expenditure reduces NPV5 by only 12.5% to US\$41.7 million

Sonoro Gold Corp.

Table 25.4 Annual Cashflow Summary

	Pre-Prod	Year1	Year2	Year3	Year4	Year5	Year6	Year7	Year8	Year9	Total
Production											
Mined - Ore (tonnes)		1,344,000	1,344,000	4,032,000	4,032,000	4,032,000	4,032,000	4,032,000	4,032,000	1,735,735	28,615,735
Mined - Waste (tonnes)		3,998,998	3,843,543	9,768,338	5,926,684	7,197,732	7,682,958	8,057,891	9,621,129	3,922,038	60,019,311
Strip Ratio		2.66	2.46	2.05	1.13	1.44	1.51	1.68	2.00	1.88	1.74
Average Grade											
Ore- crushed Au g/t		0.68	0.64	0.48	0.41	0.38	0.40	0.40	0.36	0.40	0.43
Ore - crushed Agg/t		2.74	3.82	4.54	3.12	4.22	3.03	2.73	4.23	5.91	3.75
Ore - crushed AuEq g/t		0.70	0.66	0.50	0.43	0.40	0.42	0.42	0.39	0.43	0.45
Process Recovery - Au	72%	72%	72%	72%	72%	72%	72%	72%	72%	72%	
Process Recovery - Ag	27%	27%	27%	27%	27%	27%	27%	27%	27%	27%	
Gold Price US\$/oz Au	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	\$1,800	
Silver Price US\$/oz Ag	\$23	\$23	\$23	\$23	\$23	\$23	\$23	\$23	\$23	\$23	
Recovered Gold & Silver Producti	on										
Au Oz Recovered (000s)		17,007	20,123	39,846	39,884	36,134	37,272	37,618	34,748	22,958	285,591
Ag Oz Recovered (000s)		17,685	34,322	106,244	115,233	138,827	119,945	107,339	127,010	171,287	937,893
AuEq (000 oz)		17,233	20,562	41,204	41,357	37,908	38,805	38,990	36,371	25,147	297,575
Revenues (US\$'000)											
Revenue -Au		30,613	36,221	71,723	71,792	65,042	67,090	67,713	62,547	41,324	514,064
Revenue -Ag		407	789	2,444	2,650	3,193	2,759	2,469	2,921	3,940	21,572
Sales Revenue		31,019	37,011	74,166	74,442	68,235	69,849	70,182	65,468	45,264	535,636
Cash Costs (US\$'000)											
Mining Ore		2,696	2,726	7,816	8,365	8,092	8,040	8,045	7,861	3,425	57,067
Mining Waste		8,023	7,797	18,935	12,296	14,445	15,321	16,079	18,757	7,739	119,392
Crushing		1,451	1,451	3,394	3,394	3,394	3,394	3,394	3,394	1,720	24,988
Processing		8,373	8,383	22,857	22,857	22,857	22,857	22,857	22,816	9,937	163,792
G&A		2,032	2,032	2,470	2,470	2,470	2,470	2,470	2,470	1,235	20,120
Total Cash Costs		22,576	22,389	55,472	49,382	51,258	52,082	52,845	55,298	24,056	385,359
Refining (USD \$m)		208	327	877	931	1,050	943	870	971	1,165	7,341
2% Royalties Payout (USD \$m)		1,000	1,000	0	2,000	0	0	0	0	0	4,000
Sustaining Capital (USD \$m)		1,237	6,753	2,981	2,981	804	250	250	250	0	15,506
Reclamation (USD \$m)		137	137	411	411	411	411	411	411	177	2,915
Total AISC (USD \$m)		47,735	54,079	116,746	107,096	106,143	107,207	108,634	113,072	51,011	415,121
Initial Capital Costs	-15,532										-15,532
Change in W/Cap.		-694	-508	-335	-523	664	-65	35	589	836	0
Income Tax Payable		-457	-1,806	-3,028	-4,182	-2,687	-2,933	-2,834	-824	-4,287	-23,039
Mex. mining tax, royalty		-600	-1,084	-1,534	-2,009	-1,363	-1,438	-1,413	-844	-1,557	-11,843
Net Cash Flow (US\$'000)	-15,532	4,247	3,144	9,940	12,434	11,737	12,137	12,005	6,703	13,285	70,101
Cum. cashflow	-15,532	-11,285	-8,141	1,799	14,233	25,971	38,107	50,112	56,816	70,101	•
Payback period (yrs)	2.82	1.00	1.00	0.82	0.00	0.00	0.00	0.00	0.00	0.00	

267

Figure 25.2 Sensitivity of After-Tax NPV₅

Figure 25.3 Sensitivity of After-Tax IRR

26.0 **RECOMMENDATIONS**

26.1 BUDGET FOR FURTHER EXPLORATION

Sonoro plans to complete targeted infill drilling at the El Colorado and Guadalupe vein zones where the May 2022 drilling program demonstrated multiple high-grade ore shoots within these vein zones. This drilling program will assist in the understanding of the complexity of the mineralized zone and potentially increase the grade of the Project's oxide gold mineralization. Table 26.1 summarizes the budget estimate for the proposed drilling.

10,000 Meter Exploration Budget						
Category	\$USD					
RC Drilling	300,000					
Assaying & Sample Analysis	125,000					
Geologists/ Field Crew	81,000					
Concession Payments/ Mining Rights	80,000					
Machinery Rental	60,000					
G&A (Office, administrator, legal, accounting etc.)	11,400					
Logistics (Storage, Accommodation, Fuel etc.)	10,000					
Site Expenses & Supplies	6,100					
Subtotal	673,500					
Contingency (15%)	101,025					
Total	774,525					

Table 26.1 Sonoro Budget for Targeted Infill Drilling

Source: Sonoro Gold (2023)

The Micon and D.E.N.M. QPs have reviewed and discussed Sonoro's proposal for further exploration on the Cero Caliche property. The Micon and D.E.N.M. QPs recommend that Sonoro conducts the exploration program as proposed subject to funding and any other matters which may cause the proposed exploration program to be altered in the normal course of its business activities or alterations which may affect the program because of exploration activities themselves.

Considering the amount of exploration and infill drilling conducted by Sonoro to outline the current mineral resource at the Cerro Caliche Project, Micon and D.E.N.M. consider that further exploration drilling to assist in fully defining the mineralized areas within southern and northeastern extensional areas is warranted.

26.2 Recommendations

The Micon and D.E.N.M. QPs agree with the general direction of Sonoro's exploration and development program for the property and makes the following additional recommendations:

26.2.1 Database and Exploration

- 1. Improve the database and data management system to increase the data integrity, flow, use and management of all information related to the Project.
- 2. Review and improve the QA/QC procedures for drilling, specifically items related to control samples insertion, to improve the correct assessment of potential cross contamination and insertion of duplicates within the mineralized zones. This includes improving procedures to evaluate laboratory results periodically during drilling programs to identify any potential issues immediately and apply corrective action.
- 3. Institute a systematic methodology to measure and record specific gravity (SG) within the entire drilled section during future core drilling programs.
- 4. Review logging techniques to incorporate adequate data information in some areas such as geotechnical logging as well as standardizing the terminology and, if necessary, introduce the use of applicable domains from the geological model.
- 5. Investigate the source and impact of any difference between the original and duplicate samples and take corrective action to minimize this effect, to maintain confidence in the dataset.

26.2.2 Metallurgy/Processing

Table 26.2 provides a budget estimate of the cost of future metallurgical testwork and preparation of a pre-feasibility study, if warranted.

Description	\$USD
Metallurgical Testwork (ROM Leach Testing)	\$100,000
Pre-Feasibility Study	\$370,000
Sub-Total	\$470,000
Contingency (15%)	\$70,500
Total	\$540,500

Table 26.2Budget for Further Metallurgical & Development Work

Source: D.E.N.M. (2022)

26.2.3 Mining

Conduct further optimization work to assist in potentially reducing costs and increasing efficiencies of mining related to the Project.

Sonoro Gold Corp.

27.0 DATE AND SIGNATURE PAGE

27.1 MICON INTERNATIONAL LIMITED

"William J. Lewis" {signed and sealed as of the report date}

William J. Lewis, P.Geo.Report Date: October 10,2023.Senior GeologistEffective Date: August 28, 2023.

"Kerrine Azougarh" {signed and sealed as of the report date}

Kerrine Azougarh, P.Eng. Principal Mining Engineer Report Date: October 10,2023. Effective Date: August 28, 2023.

Report Date: October 10,2023.

Effective Date: August 28, 2023.

"Christopher Jacobs" {signed and sealed as of the report date}

Christopher Jacobs, CEng, MIMMM President and Mining Economist

27.2 D.E.N.M. ENGINEERING LTD.

"David J. Salari" {signed and sealed as of the report date}

David J. Salari, P.Eng. Metallurgical Engineer Report Date: October 10,2023. Effective Date: August 28, 2023.

27.3 SRK CONSULTING (U.S.) INC.

"Douglas Reid" {signed and sealed as of the report date}

Douglas Reid, P.Eng. Principal Consultant (Resource Geology) Report Date: October 10,2023. Effective Date: August 28, 2023.

"Scott Bukett, B.Sc. SME" {signed and sealed as of the report date}

Scott Bukett, B.Sc. SME	Report Date: October 10,2023.
Principal Consultant (Resource Geology)	Effective Date: August 28, 2023.

28.0 REFERENCES

28.1 PUBLICATIONS

A-Geommining, (2021), Analisis Geotécnico y Evaluación de Parámetros de Diseño a Nivel de Ingeniería Conceptual Para el Sector Japoneses y Buena Suerte, 39 p.

A-Geommining, (2021), Pruebas de Laboratorio de Mecánica de Rocas para muestras de proyecto Cerro Caliche, 16 p.

Alba Pascoe J.A., and de Sotula, O. (1998), Current Situation and Prospectives of the Santa Gertrudis Mining District, Municipality of Cucurpe, Sonora, SEC Guidebook Series Volume 30 Gold Deposits of Northern Sonora, Mexico, Clark, K.F. (editor), p. 21-34

Albinson, T., Norman, D., Cole, D., and Chomiak, B., 2001,

Anonymous, 2021, Agnico Eagle Reports Fourth Quarter and Full Year 2020 Results, Record Quarter Production; Agnico Eagle Mines Ltd. News Report; Toronto, Ontario; pp 91-95.

Anonymous, 2020, Equinox Gold Acquires Premier Gold Corp; News Report Premier Gold Corp.

Buchanan, L.J., 1981, Precious metals associated with volcanic environments in the southwest (U.S.); in Dickenson W.R. and Payne W.D., "Relations of Tectonics to Ore Deposits in Southern Cordillera; Arizona Geological Society Digest XIV, pp. 237-262.

Burtner, Geoffrey K., 2013, The Mercedes Au-Ag District, Sonora Mexico: Geology, Geochemistry, and Structure of a Sierra Madre Low Sulfidation Epithermal Vein System; MS Thesis at University of Nevada, Reno; pp. 194.

Cendejas Cruz, F., Ramos Cruz, S., Terán Martínez, G., and R. Macedo Palencia, 1994, Geological-Mining Monograph of the State of Sonora, Mexico; Consejo Recursos Minerales; Secretaría de Energía, Minas y Industria Paraestatal Subsecretaria de Minas; 220pp, 3 plates.

Calles-Montijo, Rodrigo, (2021), Cerro Caliche Property-Site Visit Notes, 3 p.

CONAGUA (Subdirección General Técnica), 2020, Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Río San Miguel (2625), Estado de Sonora, 32p.

Cortes Guzman, Hugo, and Saba Djaddah, Cecilia, 1992 Spanish, 1994 English, Geological-Mining Monograph of the State of Sonora, Mexico; Consejo Recursos Minerales (Secretary of Energy, Mines y Industria, para Estatal Sub Secretaría de Minas; 220 pp., 3 plates.

Cuevas C., A., Bori S., E., Hernandez P., I., 1997, Carta Magnética Saracachi H12-B72, Estado de Sonora; Servicio Geológico Mexicano.

Flores, I.I., 2008, Cerro Caliche Project, Summary Report; Corex Global S. de R.L. de C.V. Internal Report; 136 pp.

Gray, Mathew, 2007, Summary Report on the Cerro Caliche Gold Project, Municipio of Cucurpe, Sonora Mexico; NI 43-101 for Corex Gold Corp.; www.sedar.com

Herdrick, M.A., 2017, Cerro Caliche Gold Mineralization Evaluations; The Overview of Potential and Resource Areas Identified; Sonoro Gold Corp. Internal Memo, 5 pp.

Herdrick, M.A., 2019, Development of Gold Resources, Cerro Caliche; Sonoro Gold Corp. Internal Memo; 4 pp., 2 illust.

Herdrick, M.A., and Diaz J.A. (2021), Sonoro Metals Corp., Cerro Caliche Project Development Report, Internal Report, 20 p.

HRL Servicio Ambiental, (2021), Estudio Tecnico Justificativo en Materia de Cambio de Uso de Suelo de Terrenos Forestales, Del Proyecto Minero Cerro el Caiche, Contracted Independent Consultant for Sonoro Gold Corp.

IMEx, 2021, Memorándum Técnico, Determinación de Densidades Aparentes, Servicios Geológicos IMEx; Contracted Independent Consultant for Sonoro Gold Corp. 40 p.

IMEx, 2021, Structural Analysis, Sonoro Gold, Project: Caliche. Prepared by: Servicios Geológicos IMEx S.C.; Contracted Independent Consultant for Sonoro Gold Corp. 10 p.

Interminera, Hermosillo, Mexico, Cerro Caliche Project – Column Leach Study on Superficial Samples, July 2020.

McClelland Laboratories Inc., 2021, Report on Heap Leach Testing – Cerro Caliche Project – MLI Job No. 4625, September 13, 2021.

Marsden H., 2012, Exploration Program Japoneses Project for Paget Southern Resources S. de R.L. de C.V.; Internal Company Report

McClelland Laboratories, Inc., 2021, Report on the Heap Leach Testing – Cerro Caliche Project – MLI Job. No. 4628, September 13, 2021.

Mendivil, H., 2019, "3D Modelling and Preliminary Mineral Inventory Estimation Report in Cerro Caliche Project; Cerro Caliche Central and Cerro Caliche West Sector, Internal Report, 23 p.

Mendivil, H., 2020, Mineralization Volume Estimate Update; Contracted Independent Consultant for Sonoro Gold Corp., 5 pp.

Mendivil, H., 2021, "3D Modelling and Preliminary Mineral Inventory Estimation Report in Cerro Caliche Project, Internal Report, 27 p.

Mendivil, H., 2021, "3D Modelling and Preliminary Mineral Inventory Estimation Report in Cerro Caliche Project; Cerro Caliche West Sector, Internal Report, 19 p.

Mendivil, H., 2021, "3D Modelling and Preliminary Mineral Inventory Estimation Report in Cerro Caliche Project; Cerro Caliche Central Sector, Internal Report, 23 p.

Minera Mar de Plata S.A. de C.V., 2018, Informe Preventivo. Proyecto de Exploración Minera Directa Proyecto "Cerro Caliche", Municipio de Cucurpe, Estado de Sonora.

Minera Mar de Plata S.A. de C.V., 2020, Informe Preventivo. Exploración Minera Directa Proyecto "Cerro Caliche Segunda Etapa, Cucurpe Sonora"

Morelos, M., and Durazo, A., 2021, Estudio Geofísica (Magnetometría- VLF-Natural Source Water Search) Microcuenca Cerro Prieto, Municipio de Cucurpe, Sonora (Mexico); Private Water Search Contractor Report; 30 pp.

Southworth, J.R. (1905), The Mines of Mexico; History, Geology, Ancient Mining and General Description of the Mining States of the Republic of Mexico, p 210 to 235.

Stephenson, P.R., et al (2006), Mineral Resource Classification — It's Time to Shoot the 'Spotted Dog'!, 6th International Mining Geology Conference, Darwin, NT, 21 - 23 August 2006, 5 p.

Strickland, D., and Sim, R., 2019, NI 43-101 Technical Report on the Cerro Caliche Gold Project, Cucurpe Mining District of Sonora State, Northwestern Mexico at 110 degrees, 37 minutes, 07 seconds Longitude and 30 degrees, 24 minutes, and 55 seconds Latitude; Sedar.com; 106 pp.

Velderrain Rojas, L.A., 2021, Análisis Petrográfico Especializado, Proyecto Cerro Caliche; Contracted Independent Consultant for Sonoro Gold Corp.

Vejar, Gildardo, (2020), Revised Mining Resource Study Assessment of Production and Operations, Cerro Caliche Project, Cucurpe, Sonora, Internal Report, 37 p.

Vejar, Gildardo, (2021), Revised Mining Resource Study Assessment of Production and Operations, Cerro Caliche Project, Cucurpe, Sonora, Internal Report, 37 p.

Vejar, Gildardo, (2021), Preliminary Mine Plan Schedule: Mine Plan Detail [Microsoft Excel spreadsheet], Internal Report

28.2 WEB BASED SOURCES

Agnico-Eagle Mining Co., (2021), <u>https://www.agnicoeagle.com/English/</u>exploration/exploration-projects/Santa-Gertrudis/default.aspx

Equinox Gold Mines (2021), https://www.equinoxgold.com/_resources/projects/technical_reports/2021-Mercedes.pdf

Goldgroup Mining Inc., (2021), https://www.goldgroupmining.com/assets/docs/aif/2020-AIF-GGA.pdf

Sonoro Gold Corp. (2021), <u>https://sonorogold.com</u>

Sonoro Gold Corp.

29.0 CERTIFICATES

CERTIFICATE OF QUALIFIED PERSON William J. Lewis

As the co-author of this report for Sonoro Gold Corp. entitled "NI 43-101 F1 Technical Report for the Preliminary Economic Assessment on the Cerro Caliche Project, Sonora, Mexico" dated October 10, 2023, with an effective date of August 28, 2023, I, William J. Lewis do hereby certify that:

- 1. I am employed by, and carried out this assignment for, Micon International Limited, Suite 601, 90 Eglinton Ave. East, Toronto, Ontario M4P 2Y3, tel. (416) 362-5135, e-mail <u>wlewis@micon-international.com</u>;
- 2. This certificate applies to the Technical Report titled "NI 43-101 F1 Technical Report for the Preliminary Economic Assessment on the Cerro Caliche Project, Sonora, Mexico" dated October 10, 2023, with an effective date of August 28, 2023;
- 3. I hold the following academic qualifications:

B.Sc. (Geology) University of British Columbia 1985

- 4. I am a registered Professional Geoscientist with the Association of Professional Engineers and Geoscientists of Manitoba (membership # 20480); as well, I am a member in good standing of several other technical associations and societies, including:
 - Association of Professional Engineers and Geoscientists of British Columbia (Membership # 20333)
 - Association of Professional Engineers, Geologists and Geophysicists of the Northwest Territories (Membership # 1450)
 - Professional Association of Geoscientists of Ontario (Membership # 1522)
- 5. I have worked as a geologist in the minerals industry for over 35 years;
- 6. I am familiar with NI 43-101 and, by reason of education, experience and professional registration, I fulfill the requirements of a Qualified Person as defined in NI 43-101. My work experience includes 4 years as an exploration geologist looking for gold and base metal deposits, more than 11 years as a mine geologist in underground mines estimating mineral resources and reserves and over 20 years as a surficial geologist and consulting geologist on precious and base metals and industrial minerals;
- 7. I have read NI 43-101 and this Technical Report has been prepared in compliance with the instrument;
- 8. I have not visited the Cerro Caliche Project which is the subject of this Technical Report.
- 9. I have written or co-authored previous Technical Reports for the mineral property that is the subject of this Technical Report;
- 10. I am independent of Sonoro Gold Corp. and its subsidiaries according to the definition described in NI 43-101 and the Companion Policy 43-101 CP;
- 11. I am responsible for Sections 1.2 to 1.4, 1.11.2, 2, 3, 19, 20, 26.1 and 28 of this Technical Report.
- 12. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make this technical report not misleading;

Report Dated this 10th day of October, 2023 with an effective date of August 28, 2023.

"William J. Lewis" {signed and sealed as of the report date}

William J. Lewis, B.Sc., P.Geo. Senior Geologist, Micon International Limited

CERTIFICATE OF QUALIFIED PERSON Kerrine Azougarh

As the co-author of this report for Sonoro Gold Corp. entitled "NI 43-101 F1 Technical Report for the Preliminary Economic Assessment on the Cerro Caliche Project, Sonora, Mexico" dated October 10, 2023, with an effective date of August 28, 2023 I, Kerrine Azougarh do hereby certify that:

- 1. I am employed as a Principal Mining Engineer by, and carried out this assignment for, Micon International Limited, Suite 601, 90 Eglinton Ave. East, Toronto, Ontario M4P 2Y3, tel. (416) 362-5135, e-mail kazougarh@micon-international.com.
- 2. I hold the following academic qualifications:

B.Sc. Mining Engineering, The University of Alberta, Canada 1993.

- 3. I am a registered Professional Engineer of Ontario (membership number 100106200); as well, I am a member in good standing of the Canadian Institute of Mining, Metallurgy and Petroleum.
- 4. I am familiar with NI 43-101 and by reason of education, experience and professional registration, fulfill the requirements of a Qualified Person as defined in NI 43-101. My work experience includes over 25 years of open pit mine engineering in operations and consulting.
- 5. I have read NI 43-101 and this Technical Report has been prepared in compliance with the instrument.
- 6. I have not visited the Cerro Caliche Project which is the subject of this Technical Report.
- 7. I am independent of Sonoro Gold Corp. and its related entities, as defined in Section 1.5 of NI 43-101.
- 8. I am responsible for Sections 1.9.1, 15, 16 and 25.2.1.10f this Technical Report.
- 9. As of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make this technical report not misleading.

Report Dated this 10th day of October, 2023 with an effective date of August 28, 2023.

"Kerrine Azougarh" {signed and sealed as of the report date}

Kerrine Azougarh P.Eng. Principal Mining Engineer

CERTIFICATE OF QUALIFIED PERSON Christopher Jacobs, CEng, MIMMM

As the co-author of this report for Sonoro Gold Corp. entitled "NI 43-101 F1 Technical Report for the Preliminary Economic Assessment on the Cerro Caliche Project, Sonora, Mexico" dated October 10, 2023, with an effective date of August 28, 2023, I, Christopher Jacobs, do hereby certify that:

- 1. I am employed as the President and Mining Economist by, and carried out this assignment for, Micon International Limited, Suite 601, 90 Eglinton Ave. East, Toronto, Ontario M4P 2Y3, tel. (416) 362-5135, email: cjacobs@micon-international.com.
- 2. I hold the following academic qualifications:

B.Sc. (Hons) Geochemistry, University of Reading, 1980;

M.B.A., Gordon Institute of Business Science, University of Pretoria, 2004.

3. I am a Chartered Engineer registered with the Engineering Council of the U.K.

(registration number 369178).

- 4. Also, I am a professional member in good standing of: The Institute of Materials, Minerals and Mining; and The Canadian Institute of Mining, Metallurgy and Petroleum (Member).
- 5. I am familiar with NI 43-101 and by reason of education, experience and professional registration, fulfill the requirements of a Qualified Person as defined in NI 43-101. I have worked in the minerals industry for more than 35 years; my work experience includes 10 years as an exploration and mining geologist on gold, platinum, copper/nickel and chromite deposits; 10 years as a technical/operations manager in both open-pit and underground mines; 3 years as strategic (mine) planning manager and the remainder as an independent consultant, in which capacity I have worked on a variety of deposits including gold and base metals.
- 6. I have not visited the Cerro Caliche Project that is the subject of this report.
- 7. I am responsible for Sections 1.10, 22 and 25.2.20f this Technical Report.
- 8. I am independent of Sonoro Gold Corp. and its related entities, as defined in Section 1.5 of NI 43-101.
- 9. I have read NI 43-101 and the Sections of this report for which I am responsible have been prepared in compliance with the instrument.
- 10. As of the date of this certificate to the best of my knowledge, information and belief, the sections of this Technical Report for which I am responsible contain all scientific and technical information that is required to be disclosed to make this report not misleading.

Report Dated this 10th day of October, 2023 with an effective date of August 28, 2023.

"Christopher Jacobs" {signed and sealed}

Christopher Jacobs, CEng, MIMMM

President

CERTIFICATE OF QUALIFIED PERSON David J. Salari. P.Eng.

I, David J. Salari, P.Eng., of 503-125 Bronte Road, Oakville, ON, L6L 0H1, do hereby certify that:

- 1. This certificate applies to the Technical Report entitled "NI 43-101 F1 Technical Report for the Preliminary Economic Assessment on the Cerro Caliche Project, Sonora, Mexico" dated October 10, 2023, with an effective date of August 28, 2023, prepared for Sonoro Gold Corp.
- 2. I am a metallurgical engineer with an office at Suite 300-10, 1100 Burloak Drive, Burlington, ON, L6L 2Y8;
- 3. I am a graduate of the University of Toronto with a Bachelor's of Applied Science (BASc) Metallurgy and Material Science;
- 4. I have been actively involved in mining and mineral processing since 1980 with extensive experience in metallurgical and mill testing and design, mill capital and operating costs, construction, commissioning, and mill operations;
- 5. I am a member in good standing of the Professional Engineers Ontario #40416505 and I am the designated P.Eng. for D.E.N.M. Engineering Ltd. Certificate of Authorization Professional Engineers Ontario #100102038 and Designation as a Consulting Engineer Professional Engineers Ontario #4012;
- 6. I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101. I am independent of the Issuer and related companies applying all of the tests in Section 1.5 of NI 43-101;
- 7. I have visited the Cerro Caliche Site on July 28, 2021 to review the total site area and mineralized zones. Also an overview of the proposed plant and pad areas, power lines, and water.
- I am responsible for the review and preparation of Sections of 1.1,1.7.1.9.2, 1.9.3, 1.10.2, 1.11.3.2, 1.11.3.4,
 2.1, 2.2, 13, 17,18, 21.1, 21.1.2, 21.1.3, 21.1.4, 21.1.5, 21.6.2, 21.2, 21.2.1, 21.2.2, 21.2.3, 24.1.1, 24.1.2,
 25.2.1.2, 24.2.1.3 of this report of this report.
- 9. I have had no prior involvement with the property this is subject to this Technical Report;
- 10. As of the effective date of this Technical Report, to the best of my knowledge, information and belief, this technical report contains all scientific and technical information that is required to be discussed to make the Technical Report not misleading;
- 11. I have read NI43-101, and the Technical Report has been prepared in accordance with NI 43-101 and Form 43-101F1.

Effective Date: August 28, 2023 Signing Date : this 10th day of October, 2023

"David J. Salari" (original signed and sealed)

David J. Salari, P.Eng.

CERTIFICATE OF QUALIFIED PERSON Douglas Reid. P.Eng.

I, Douglas Reid, P.Eng., do hereby certify that:

- 1. This certificate applies to the Technical Report entitled "NI 43-101 F1 Technical Report for the Preliminary Economic Assessment on the Cerro Caliche Project, Sonora, Mexico" dated October 10, 2023, with an effective date of August 28, 2023, prepared for Sonoro Gold Corp.
- 2. I am Principal Consultant (Resource Geology) of SRK Consulting (U.S.), Inc., 999 Seventeenth Street, Suite 400, Denver, CO, USA, 80202.
- 3. I graduated with a degree in a Bachelor of Science in Geological (Geophysics) Engineering from the University of Saskatchewan in 1986. I am a P. Eng. (123571) of the Engineers and Geoscientists British Columbia. I have worked as a Geological Engineer for a total of 35 years since my graduation from university. My relevant experience includes developing and reviewing resource models and mineral resource estimation for mineral projects in North and South America and Africa since 1994.
- 4. I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 5. I visited the Cerro Caliche property on November 4, 2022 for 2 days.
- 6. I am responsible for geology portions of Sections 1, 2, 3, all of Sections 10, 11, 12, 14, and 23, portions of Sections 25 and 26.
- 7. I am independent of the issuer applying all of the tests in section 1.5 of NI 43-101.
- 8. I am QP in a previous technical report titled "NI 43-101 Technical Report, Mineral Resource Estimate, Cerro Caliche Project, Sonora, Mexico" with an Effective Date of January 26, 2023".
- 9. I have read NI 43-101 and Form 43-101F1 and the sections of the Technical Report I am responsible for have been prepared in compliance with that instrument and form.
- 10. As of the aforementioned Effective Date, to the best of my knowledge, information and belief, the sections of the Technical Report I am responsible for contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Effective Date: August 28, 2023 Signing Date: this 10th day of October, 2023

"Douglas Reid" (original signed and sealed)

Douglas Reid, P.Eng.

CERTIFICATE OF QUALIFIED PERSON Scott Burkett, BSc, SME-RM

I, Scott Burkett, BSc, SME-RM, do hereby certify that:

- 1. This certificate applies to the Technical Report entitled "NI 43-101 F1 Technical Report for the Preliminary Economic Assessment on the Cerro Caliche Project, Sonora, Mexico" dated October 10, 2023, with an effective date of August 28, 2023, prepared for Sonoro Gold Corp.
- 2. I am Principal Consultant (Resource Geology) of SRK Consulting (U.S.), Inc., 999 Seventeenth Street, Suite 400, Denver, CO, USA, 80202.
- 3. I graduated with a degree in Geology from University of Idaho in 2007. I am a Registered Member of the Society of Mining, Metallurgy & Exploration. I have worked as a Geologist for a total of 15 years since my graduation from university. My relevant experience includes mineral exploration and geologic modelling of Low Sulfidation Epithermal Vein Systems.
- 4. I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 5. I visited the Cerro Caliche property on November 4, 2022 for 2 days.
- 6. I am responsible for geology portions of Sections 1, 2, 3, all of Sections 4, 5, 6, 7, 8, 9, and portions of Sections 14, and 26.
- 7. I am independent of the issuer applying all of the tests in section 1.5 of NI 43-101.
- 8. I am QP in a previous technical report titled "NI 43-101 Technical Report, Mineral Resource Estimate, Cerro Caliche Project, Sonora, Mexico" with an Effective Date of January 26, 2023".
- 9. I have read NI 43-101 and Form 43-101F1 and the sections of the Technical Report I am responsible for have been prepared in compliance with that instrument and form.
- 10. As of the aforementioned Effective Date, to the best of my knowledge, information and belief, the sections of the Technical Report I am responsible for contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Effective Date: August 28, 2023 Signing Date: this 10th day of October, 2023

"Scott Burkett" (original signed and sealed)

Scott Burkett, BSc, SME-RM